Skip to main content
Log in

Thin oxide buffer layers for avoiding leaks in CIGS solar cells; a theoretical analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The purpose of this research is the performance improvement of the CIGS/CdS/ZnO solar cells, while the CdS buffer layer is too thin. Enhancement of photocurrent by decreasing the thickness of CdS buffer layer is expected from a reduced parasitic absorption at short wavelengths. However, the formation of pinholes due to the too-thin CdS buffer layer and a non-uniform coverage of the CIGS surface degrades the solar cell performance by reducing fill factor (FF) and open-circuit voltage (Voc). This degradation is because the direct contact of ZnO and CIGS could exist in pinholes, and the formation of the cliff-like band alignment at CIGS/ZnO interface increases the recombination rate. In this work, to eliminate this destructive effect in the CIGS solar cells with a thin CdS layer, ZnO window layer has been replaced by a suitable thin oxide layer as an intermediate buffer layer. By the proposed oxides, the band alignment between the CIGS layer and the adjacent layer is optimized, while pinholes occurred. It is found that the proposed buffer-less CIGS solar cell leading to the efficiency improvement from 17.6% to 18.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.Z. Hamri, Y. Bourezig, M. Medles, M. Ameri, K. Toumi, I. Ameri, Y. Al-Douri, C.H. Voon, Sol. Energy 178, 150 (2019)

    Article  CAS  Google Scholar 

  2. X. Shen, M. Yang, C. Zhang, Z. Qiao, H. Wang, C. Tang, Superlattices Microstruct. 123, 251 (2018)

    Article  CAS  Google Scholar 

  3. H. Li, F. Qu, H. Luo, X. Niu, J. Chen, Y. Zhang, H. Yao, X. Jia, H. Gu, W. Wang, Results Phys. 12, 704 (2019)

    Article  Google Scholar 

  4. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, IEEE J. Photovolt. 9, 1863 (2019)

    Article  Google Scholar 

  5. N. Khoshsirat and N. A. Md Yunus, in 2013 IEEE Conf. Sustain. Util. Dev. Eng. Technol. (IEEE, 2013), pp. 63–67.

  6. T. Nakada, M. Mizutani, Jpn. J. Appl. Phys. 41, L165 (2002)

    Article  CAS  Google Scholar 

  7. C. Platzer-Björkman, T. Törndahl, D. Abou-Ras, J. Malmström, J. Kessler, L. Stolt, J. Appl. Phys. 100, 044506 (2006)

    Article  CAS  Google Scholar 

  8. A. Grimm, D. Kieven, R. Klenk, I. Lauermann, A. Neisser, T. Niesen, J. Palm, Thin Solid Films 520, 1330 (2011)

    Article  CAS  Google Scholar 

  9. A. Okamoto, T. Minemoto, H. Takakura, Jpn. J. Appl. Phys. 50, 04DP10 (2011)

    Article  Google Scholar 

  10. A. Grimm, D. Kieven, I. Lauermann, M.C. Lux-Steiner, F. Hergert, R. Schwieger, R. Klenk, EPJ Photovolt. 3, 30302 (2012)

    Article  CAS  Google Scholar 

  11. J. Lindahl, U. Zimmermann, P. Szaniawski, T. Torndahl, A. Hultqvist, P. Salome, C. Platzer-Bjorkman, M. Edoff, IEEE J. Photovolt. 3, 1100 (2013)

    Article  Google Scholar 

  12. E. Yousfi, B. Weinberger, F. Donsanti, P. Cowache, D. Lincot, Thin Solid Films 387, 29 (2001)

    Article  CAS  Google Scholar 

  13. C. Gordillo, C. Calderon, C. Quinonez, in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Osaka, 2003, pp. 483–486.

  14. I. Lauermann, C. Loreck, A. Grimm, R. Klenk, H. Mönig, M.C. Lux-Steiner, C.-H. Fischer, S. Visbeck, T.P. Niesen, Thin Solid Films 515, 6015 (2007)

    Article  CAS  Google Scholar 

  15. T. Törndahl, C. Platzer-Björkman, J. Kessler, M. Edoff, Prog. Photovolt. Res. Appl. 15, 225 (2007)

    Article  CAS  Google Scholar 

  16. S. Siebentritt, T. Kampschulte, A. Bauknecht, U. Blieske, W. Harneit, U. Fiedeler, M. Lux-Steiner, Sol. Energy Mater. Sol. Cells 70, 447 (2002)

    Article  CAS  Google Scholar 

  17. Y. Ohtake, S. Chaisitsak, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 37, 3220 (1998)

    Article  CAS  Google Scholar 

  18. W. Hsu, C.M. Sutter-Fella, M. Hettick, L. Cheng, S. Chan, Y. Chen, Y. Zeng, M. Zheng, H.-P. Wang, C.-C. Chiang, A. Javey, Sci. Rep. 5, 16028 (2015)

    Article  CAS  Google Scholar 

  19. J. Chantana, T. Kato, H. Sugimoto, T. Minemoto, Prog. Photovolt. Res. Appl. 25, 431 (2017)

    Article  CAS  Google Scholar 

  20. J. Löckinger, S. Nishiwaki, T.P. Weiss, B. Bissig, Y.E. Romanyuk, S. Buecheler, A.N. Tiwari, Sol. Energy Mater. Sol. Cells 174, 397 (2018)

    Article  CAS  Google Scholar 

  21. M.A. Contreras, M.J. Romero, B. To, F. Hasoon, R. Noufi, S. Ward, K. Ramanathan, Thin Solid Films 403–404, 204 (2002)

    Article  Google Scholar 

  22. P. Jackson, R. Würz, U. Rau, J. Mattheis, M. Kurth, T. Schlötzer, G. Bilger, J.H. Werner, Prog. Photovolt. Res. Appl. 15, 507 (2007)

    Article  CAS  Google Scholar 

  23. A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Nat. Mater. 12, 1107 (2013)

    Article  CAS  Google Scholar 

  24. J. Keller, F. Gustavsson, L. Stolt, M. Edoff, T. Törndahl, Sol. Energy Mater. Sol. Cells 159, 189 (2017)

    Article  CAS  Google Scholar 

  25. C. Platzer-Björkman, J. Lu, J. Kessler, L. Stolt, Thin Solid Films 431–432, 321 (2003)

    Article  CAS  Google Scholar 

  26. T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, M. Kitagawa, Sol. Energy Mater. Sol. Cells 67, 83 (2001)

    Article  CAS  Google Scholar 

  27. T. Minemoto, A. Okamoto, H. Takakura, Thin Solid Films 519, 7568 (2011)

    Article  CAS  Google Scholar 

  28. T. Kobayashi, K. Yamauchi, T. Nakada, IEEE J. Photovolt. 3, 1079 (2013)

    Article  Google Scholar 

  29. T. Minemoto, J. Julayhi, Curr. Appl. Phys. 13, 103 (2013)

    Article  Google Scholar 

  30. M. Burgelman, P. Nollet, S. Degrave, Thin Solid Films 362, 527 (2000)

    Article  Google Scholar 

  31. M. Elbar, S. Tobbeche, A. Merazga, Sol. Energy 122, 104 (2015)

    Article  CAS  Google Scholar 

  32. B. Gaury, Y. Sun, P. Bermel, P.M. Haney, Sol. Energy Mater. Sol. Cells 198, 53 (2019)

    Article  CAS  Google Scholar 

  33. S. Sharbati, I. Gharibshahian, A.A. Orouji, Sol. Energy 188, 1 (2019)

    Article  CAS  Google Scholar 

  34. M. Gloeckler, Device Physics of Cu(In, Ga)Se2 Thin-Film Solar Cells (Colorado State University, Colorado, 2005).

    Google Scholar 

  35. E.D. Palik, Boston Academic Press (San Diego, London, 1998).

    Google Scholar 

  36. L.Y. Lin, Y. Qiu, Y. Zhang, H. Zhang, Chinese Phys. Lett. 33, 1 (2016)

    Google Scholar 

  37. S. Sharbati, I. Gharibshahian, A.A. Orouji, Opt. Mater. (Amst). 75, 216 (2018)

    Article  CAS  Google Scholar 

  38. I. Gharibshahian, S. Sharbati, A.A. Orouji, Thin Solid Films 655, 95 (2018)

    Article  CAS  Google Scholar 

  39. S. Sharbati, Opt. Quant. Electron. 50, 1 (2018)

    Article  Google Scholar 

  40. A. Bauer, S. Sharbati, M. Powalla, Sol. Energy Mater. Sol. Cells 165, 119 (2017)

    Article  CAS  Google Scholar 

  41. I. Gharibshahian, A.A. Orouji, S. Sharbati, Sol. Energy 202, 294 (2020)

    Article  CAS  Google Scholar 

  42. I. Gharibshahian, A.A. Orouji, S. Sharbati, Sol. Energy Mater. Sol. Cells 212, 110581 (2020)

    Article  CAS  Google Scholar 

  43. L. Grenet, R. Fillon, G. Altamura, H. Fournier, F. Emieux, P. Faucherand, S. Perraud, Sol. Energy Mater. Sol. Cells 126, 135 (2014)

    Article  CAS  Google Scholar 

  44. C.H. Huang, W.J. Chuang, C.P. Lin, Y.L. Jan, Y.C. Shih, Crystals 8, 296 (2018)

    Article  CAS  Google Scholar 

  45. S.S. Hegedus, W.N. Shafarman, Prog. Photovolt. Res. Appl. 12, 155 (2004)

    Article  CAS  Google Scholar 

  46. X. Fang, S. Ren, C. Li, C. Li, G. Chen, H. Lai, J. Zhang, L. Wu, Sol. Energy Mater. Sol. Cells 188, 93 (2018)

    Article  CAS  Google Scholar 

  47. P. Singh, N.M. Ravindra, Sol. Energy Mater. Sol. Cells 101, 36 (2012)

    Article  CAS  Google Scholar 

  48. J.A. Van Delft, D. Garcia-Alonso, W.M.M. Kessels, Semicond. Sci. Technol. 27, 074002 (2012)

    Article  CAS  Google Scholar 

  49. A. Valla, P. Carroy, F. Ozanne, D. Muñoz, Sol. Energy Mater. Sol. Cells 157, 874 (2016)

    Article  CAS  Google Scholar 

  50. T. Hayakawa, T. Nishimura, H. Sugiura, N. Suyama, K. Nakada, A. Yamada, IEEE J. Photovolt. 8, 1841 (2018)

    Article  Google Scholar 

  51. S. Mandal, S. Mitra, S. Dhar, H. Ghosh, C. Banerjee, S.K. Datta, H. Saha, Appl. Surf. Sci. 349, 116 (2015)

    Article  CAS  Google Scholar 

  52. S. Sharbati, J.R. Sites, IEEE J. Photovolt. 4, 697 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaneh Sharbati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghamsari-Yazdel, F., Gharibshahian, I. & Sharbati, S. Thin oxide buffer layers for avoiding leaks in CIGS solar cells; a theoretical analysis. J Mater Sci: Mater Electron 32, 7598–7608 (2021). https://doi.org/10.1007/s10854-021-05476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05476-7

Navigation