Skip to main content
Log in

Structure evolution and electrical properties of lead-free Bi0.5Na0.41K0.09TiO3 piezoceramics by isovalent La doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigated the structure evolution, surface morphology, dielectric properties, ferroelectric properties, piezoelectric properties, and electromechanical strain properties of lead-free (Bi0.5−xLax)(Na0.41K0.09)TiO3 piezoelectric ceramics. All samples were fabricated by a traditional solid-state synthesis. The effects of La3+-isovalent substituted on Bi3+-site of the Bi0.5Na0.41K0.09TiO3 system were examined. The addition of La doping in the Bi0.5Na0.41K0.09TiO3 ceramics induced the second phase of K4Ti3O8 and a crystal structural change from the rhombohedral and tetragonal phase to a pseudocubic phase. All samples show similar grain morphology and dense microstructure with the average grain size around 1.33 to 1.61 μm. The dielectric curves and field-induced polarization loops of samples confirm the nonergodic-to-ergodic relaxor phase transformation, corresponding to the reduction of the temperature at the phase transition from ferroelectric to relaxor phase and the disruption of the ferroelectric properties happened in samples when increasing La3+ content. Besides, the maximum piezoelectric constant of 139 pC/N was found in (Bi0.48La0.02)(Na0.41K0.09)TiO3 ceramic, while the (Bi0.46La0.04)(Na0.41K0.09)TiO3 ceramic shows a maximum strain of ~ 0.2% at a low field of 40 kV/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Uchino, Ferroelectric Devices, 2nd edn. (Marcel Dekker, New York, 2000).

    Google Scholar 

  2. A.J. Bell, O. Deubzer, MRS Bull. 43(8), 581–587 (2018)

    Article  CAS  Google Scholar 

  3. B. Li, M.S. Cao, J. Liu, D.W. Wang, J. Am. Ceram. Soc. 99(7), 2316–2326 (2016)

    Article  CAS  Google Scholar 

  4. J. Rödel, J.F. Li, MRS. Bull. 43(8), 576–580 (2018)

    Article  Google Scholar 

  5. J. Hao, W. Li, J. Zhai, H. Chen, Mater. Sci. Eng. R 135, 1–57 (2019)

    Article  Google Scholar 

  6. L. Zhang, Z. Wang, Y. Li, P. Chen, J. Cai, Y. Yan, Y. Zhou, D. Wang, G. Liu, J. Eur. Ceram. Soc. 39(10), 3057–3063 (2019)

    Article  CAS  Google Scholar 

  7. K. McLaughlin, C. Pascual-Gonzalez, D. Wang, A. Feteira, J. Alloys Compd. 779, 7–14 (2019)

    Article  CAS  Google Scholar 

  8. K. Liu, Y. Zhang, M.A. Marwat, G. Wang, D. Wang, W. Ma, T. Wei, M. Li, J. Xu, H. Yang, S. Kongparakul, C. Samart, J. Zang, P. Fan, H. Zhang, J. Am. Ceram. Soc. 103(6), 3739–3747 (2020)

    Article  CAS  Google Scholar 

  9. Y. Zhang, X. Liu, G. Wang, Y. Li, S. Zhang, D. Wang, H. Sun, J. Alloys Compd. 825, 154020 (2020)

    Article  CAS  Google Scholar 

  10. J. Koruza, A.J. Bell, T. Frömling, K.G. Webber, K. Wang, J. Rödel, J. Materiomics 4(1), 13–26 (2018)

    Article  Google Scholar 

  11. K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45, 4493 (2006)

    Article  CAS  Google Scholar 

  12. V.D.N. Tran, A. Ullah, T.H. Dinh, J.S. Lee, J. Electron. Mater. 45, 2627–2631 (2016)

    Article  CAS  Google Scholar 

  13. P. Fan, Y. Zhang, Q. Zhang, B. Xie, Y. Zhu, M.A. Mawat, W. Ma, K. Liu, J. Xiao, H. Zhang, J. Eur. Ceram. Soc. 38(13), 4404–4413 (2018)

    Article  CAS  Google Scholar 

  14. H. Xi, L. Yu, H. Qian, F. Chen, M. Mao, Y. Liu, Y. Lyu, J. Mater. Sci. 55, 1388–1398 (2020)

    Article  CAS  Google Scholar 

  15. J.N. Perumal, V. Athikesavan, J. Mater. Sci. - Mater. Electron. 31, 4092–4105 (2020)

    Article  CAS  Google Scholar 

  16. X. Ren, H. Yin, Y. Tang, H. Fan, H. Yuan, Ceram. Int. 46(2), 1876–1882 (2020)

    Article  CAS  Google Scholar 

  17. T.H. Dinh, M.R. Bafandeh, J.K. Kang, C.H. Hong, W. Jo, J.S. Lee, Ceram. Int. 41(1), S458–S463 (2015)

    Article  CAS  Google Scholar 

  18. T. Li, X. Lou, X. Ke, S. Cheng, S. Mi, X. Wang, J. Shi, X. Liu, G. Dong, H. Fan, Y. Wang, X. Tan, Acta Mater. 128, 337–344 (2017)

    Article  CAS  Google Scholar 

  19. S.K. Gupta, R. McQuade, B. Gibbons, P. Mardilovich, D.P. Cann, J. Appl. Phys. 127, 074104 (2020)

    Article  Google Scholar 

  20. W. Kang, Y. Li, Z. Zheng, R. Zhao, Ceram. Int. 46(11), 18089–18095 (2020)

    Article  CAS  Google Scholar 

  21. L.D. Vuong, P.D. Gio, J. Alloys Compd. 817, 152790 (2020)

    Article  CAS  Google Scholar 

  22. N. Mostovych, S.S. Won, I.W. Kim, S.H. Kim, A.I. Kingon, AIP Adv. 10, 045033 (2020)

    Article  CAS  Google Scholar 

  23. P. Jaita, A. Watcharapasorn, N. Kumar, S. Jiansirisomboon, D.P. Cann, J. Am. Ceram. Soc. 99(5), 1615–1624 (2016)

    Article  CAS  Google Scholar 

  24. T.H. Dinh, J.K. Kang, J.S. Lee, N.H. Khansur, J. Daniels, H.Y. Lee, F.Z. Yao, K. Wang, J.F. Li, H.S. Han, W. Jo, J. Eur. Ceram. Soc. 36(14), 3401–3407 (2016)

    Article  CAS  Google Scholar 

  25. V.D.N. Tran, A. Ullah, T.H. Dinh, J.S. Lee, J. Electron. Mater. 45, 2639–2643 (2016)

    Article  CAS  Google Scholar 

  26. S. Zhao, G. Li, A. Ding, T. Wang, Q. Yin, J. Phys. D: Appl. Phys. 39, 2277 (2006)

    Article  CAS  Google Scholar 

  27. M. Hammer, M.J. Hoffmann, J. Electroceram. 2, 75–84 (1998)

    Article  CAS  Google Scholar 

  28. C.R. Zhou, X.Y. Liu, W.Z. Li, Solid. State. Comm. 149, 481–485 (2009)

    Article  CAS  Google Scholar 

  29. R. Dittmer, W. Jo, J. Daniels, S. Schaab, J. Rödel, J. Am. Ceram. Soc. 94, 4283–4290 (2011)

    Article  CAS  Google Scholar 

  30. R. Cheng, Z. Xu, R. Chu, J. Hao, J. Du, G. Li, J. Eur. Ceram. Soc. 36(3), 489–496 (2016)

    Article  CAS  Google Scholar 

  31. A. Ullah, M. Alam, A. Ullah, C.W. Ahn, J.S. Lee, S. Cho, I.W. Kim, RSC Adv. 6(68), 63915–63921 (2016)

    Article  CAS  Google Scholar 

  32. G.A. Samara, J. Phys. Condens. Matter. 15, R367 (2003)

    Article  CAS  Google Scholar 

  33. C.W. Ahn, C.H. Hong, B.Y. Choi, H.P. Kim, H.S. Han, Y.H. Hwang, W. Jo, K. Wang, J.F. Li, J.S. Lee, I.W. Kim, J. Korean Phys. Soc. 68, 1481–1494 (2016)

    Article  Google Scholar 

  34. A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31–52 (2006)

    Article  CAS  Google Scholar 

  35. R. Ahluwalia, T. Lookman, A. Saxena, W. Cao, Phys. Rev. B: Condens. Matter 72, 014112 (2005)

    Article  Google Scholar 

  36. R. Theissmann, L.A. Schmitt, J. Kling, R. Schierholz, K.A. Schonau, J. Appl. Phys. 102, 024111 (2007)

    Article  Google Scholar 

  37. G. Wang, Z. Fan, S. Murakami, Z. Lu, D.A. Hall, D.C. Sinclair, A. Feteira, X. Tan, J.L. Jones, A.K. Kleppe, D. Wang, I.M. Reaney, J. Mater. Chem. A 7(37), 21254–21263 (2019)

    Article  CAS  Google Scholar 

  38. S. Murakami, D. Wang, A. Mostaed, A. Khesro, A. Feteira, D.C. Sinclair, Z. Fan, X. Tan, I.M. Reaney, J. Am. Ceram. Soc. 101(12), 5428–5442 (2018)

    Article  CAS  Google Scholar 

  39. S. Murakami, N.T.A.F. Ahmed, D. Wang, A. Feteira, D.C. Sinclair, I.M. Reaney, J. Eur. Ceram. Soc. 38(12), 4220–4231 (2018)

    Article  CAS  Google Scholar 

  40. W. Jo, T. Granzow, E. Aulbach, J. Rödel, D. Damjanovic, J. Appl. Phys. 105, 094102 (2009)

    Article  Google Scholar 

  41. R. Dittmer, W. Jo, J. Rödel, S. Kalinin, N. Balke, Adv. Funct. Mater. 22(20), 4208–4215 (2012)

    Article  CAS  Google Scholar 

  42. D. Gobeljic, V.V. Shvartsman, A. Belianinov, B. Okatan, J. Baris, S. Jesse, S. Kalinin, C. Groh, J. Rödel, D.C. Lupascu, Nanoscale 8, 2168–2176 (2016)

    Article  CAS  Google Scholar 

  43. T.H. Dinh, H.S. Han, J.S. Lee, Mater. Lett. 258, 126793 (2020)

    Article  CAS  Google Scholar 

  44. D.S. Lee, D.H. Lim, M.S. Kim, K.H. Kim, S.J. Jeong, Appl. Phys. Lett. 99, 062906 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by PHENIKAA University under Grant Number 01.2020.06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Hinh Dinh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, V.D.N., Vu, L.H., Van, V.L. et al. Structure evolution and electrical properties of lead-free Bi0.5Na0.41K0.09TiO3 piezoceramics by isovalent La doping. J Mater Sci: Mater Electron 32, 4363–4371 (2021). https://doi.org/10.1007/s10854-020-05179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05179-5

Navigation