Skip to main content
Log in

Synthesis, structure, physical, dielectric characteristics, and gamma-ray shielding competences of novel P2O5–Li2O–ZnO–CdO glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Newly phosphate-based glasses containing cadmium with the form 40P2O5–10Li2O–(50–x)ZnO–xCdO (x = 0, 10, 20, 30, 40 mol%) were synthesized via a conventional melt quenching procedure. The synthesized glasses were coded as PLZC00–PLZC40. The nature structure, physical, FTIR measurements, dielectric properties, and gamma-ray shielding competences of these glasses have been investigated. Dielectric spectroscopy parameters of investigated glass sample were measured throughout frequency range from 50 Hz to 5 MHz. XRD measurements confirmed that the synthesized glasses were in non-crystalline nature. Density increased with the increase of CdO concentration in mol% from 3.0949 g/cm3 for PLZC00 glasses (free with CdO) to 3.4989 g/cm3 for PLZC40 glasses (with 40 mol% of CdO). The dielectric constant \(\varepsilon^{\prime}\) was decreased for CdO concentration up to 20 mol% referring to creation cross-linkage with other elements, while the bonding defect is formed for CdO concentration greater than 20 mol% and increases the \(\varepsilon^{\prime}\) value. The PLZC40 glass sample possesses higher linear attenuation coefficient (LAC) values than the other prepared samples. Consequently, PLZC40 glass sample achieved the minimum half value layer (HVL) and mean free path (MFP) values among all PLZC-prepared glasses. The highest Zeff values are found around 0.03 MeV and varied from 43.82 to 32.78, while the lowest Zeff values were found at 1.5 MeV and varied between 17.16 and 12.19. The deviation which was found between Zeff values may be due to the difference in the composition of each prepared sample. Finally, one can conclude that the PLZC40 glass sample (with 40 mol% of CdO) has the best shielding capacity among all other studied glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Siegel, J.M.F. Navarro, A.G. Navarro, V.D. Blanco, O. Sanz, J. Solis, F. Vega, J. Armengol, Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold. Appl. Phys. Lett. 86, 121109 (2005)

    Article  Google Scholar 

  2. W. Yang, C. Corbari, P.G. Kazansky, K. Sakaguchi, I.C.S. Carvalho, Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing. Opt. Express. 16, 16215–16226 (2008)

    Article  CAS  Google Scholar 

  3. J. Ashok, N. Purnachand, J. SureshKumar, M.S. Reddy, B. Suresh, M.P.F. Graça, N. Veeraiah, Studies on dielectric dispersion, relaxation kinetics and a.c. conductivity of Na2O-CuO-SiO2 glasses mixed with Bi2O3-influence of redox behavior of copper ions. J. Alloys Compd. 696, 1260–1268 (2017)

    Article  CAS  Google Scholar 

  4. V. Gancheva, N.D. Yordanov, Y. Karakirov, EPR investigation of the gamma radiation response of different types of glasses. Spectrochim. Acta A. 63, 875–878 (2006)

    Article  Google Scholar 

  5. L.V.E. Caldas, V.A.C. Quezada, Influence of thermal treatments on the response decay of glass radiation detectors. Radiat. Prot. Dosim. 100, 433–436 (2002)

    Article  CAS  Google Scholar 

  6. V.M. Sglavo, E. Mura, D. Milanese, J. Lousteau, Mechanical properties of phosphate glass optical fibers. Int. J. Appl Glass Sci. 5(1), 57–64 (2014)

    Article  CAS  Google Scholar 

  7. R.K. Brow, Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids. 263 & 264, 1–28 (2000)

    Article  CAS  Google Scholar 

  8. K. Meyer, Characterisation of the structure of binary calcium ultraphosphate glasses by infrared and Raman spectroscopy. Phys. Chem. Glasses 39, 108 (1998)

    CAS  Google Scholar 

  9. R.K. Brow, Review the structure of simple phosphate glasses. J. Non-Cryst. Solids. 263–264, 1–28 (2000)

    Article  Google Scholar 

  10. N. Vedeanu, O. Cozar, I. Ardelean, B. Lendl, D.A. Magdas, Raman spectroscopic study of CuO–V2O5–P2O5–CaO glass system. Vibr. Spectrosc. 48, 259 (2008)

    Article  CAS  Google Scholar 

  11. D.A. Magdas, O. Cozar, I. Ardelean, L. David, Spectroscopic studies of some phosphate glasses with molybdenum ions. J. Opt. Adv. Mater. 9, 729 (2007)

    CAS  Google Scholar 

  12. C. Ivascu, I.B. Cozar, L. Daraban, G. Damian, Spectroscopic investigation of P2O5–CdO–Li2O glass system. J. Non-Cryst. Sol. 359, 60–64 (2013)

    Article  CAS  Google Scholar 

  13. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceram. Int. 46, 2055–2062 (2020)

    Article  CAS  Google Scholar 

  14. O. Kilicoglu, H.O. Tekin, Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: a comparative investigation. Ceram. Int. 46(2), 1323–1333 (2020)

    Article  CAS  Google Scholar 

  15. M.I. Sayyed, H.O. Tekin, E.E. Altunsoy, S.S. Obaid, M. Almatari, addition shielding study of tellurite tungsten glasses with different antimony oxide as transparent shielding materials using MCNPX code. J. Non-Cryst. Solids. 498, 167–172 (2018)

    Article  CAS  Google Scholar 

  16. M.S. Al-Buriahi, Y.S. Rammah, Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A. 125(10), 678 (2019)

    Article  Google Scholar 

  17. Y.S. Rammah, M.S. Al-Buriahi, A.S. Abouhaswa, B2O3–BaCO3–Li2O3 glass system doped with Co3O4: structure, optical, and radiation shielding properties. Phys. B Condens. Matter 576, 411717 (2020)

    Article  CAS  Google Scholar 

  18. M.R. Ahmed, B. Ashok, Sh.K. Ahmmad, A. Hameed, M.N. Chary, Md. Shareefuddin, Infrared and Raman spectroscopic studies of Mn2+ ions doped in strontium alumino borate glasses: describes the role of Al2O3. Spectrochim. Acta Part A 210, 308–314 (2019)

    Article  CAS  Google Scholar 

  19. M.R. Ahmed, Md. Shareefuddin, EPR, optical, physical and structural studies of strontium alumino-borate glasses containing Cu2+ ions. SN Appl. Sci. 1, 209 (2019)

    Article  Google Scholar 

  20. M.R. Ahmed, KCh. Sekhar, A. Hameed, M.N. Chary, Md. Shareefuddin, Role of aluminum on the physical and spectroscopic properties of chromium-doped strontium alumino borate glasses. Int. J. Mod. Phys. 32(8), 1850095 (2018)

    Article  CAS  Google Scholar 

  21. E. Kavaz, F.I. El-Agawany, H.O. Tekin, U. Perisanoglu, Y.S. Rammah, Nuclear radiation shielding using barium borosilicate glass ceramics. J. Phys. Chem. Sol. 142, 109437 (2020)

    Article  CAS  Google Scholar 

  22. Y.S. Rammah, E. Kavaz, H. Akyildirim, F.I. El-Agawany, Evaluation of photon, neutron, and charged particle shielding competences of TeO2-B2O3-Bi2O3-TiO2 glasses. J. Non-Cryst. Solids. 535, 119960 (2020)

    Article  CAS  Google Scholar 

  23. Y.S. Rammah, A.A. Ali, R. El-Mallawany, F.I. El-Agawany, Fabrication, physical, optical characteristics and gamma-ray competence of novel bismo-borate glasses doped with Yb2O3 rare earth. Phys. B 583, 412055 (2020)

    Article  CAS  Google Scholar 

  24. Y.S. Rammah, G. Kilic, R. El-Mallawany, U. Gökhan Issever, F.I. El-Agawany, Investigation of optical, physical, and gamma-ray shielding features of novel vanadyl boro-phosphate glasses. J. Non-Cryst. Solids. 533, 119905 (2020)

    Article  CAS  Google Scholar 

  25. A.S. Abouhaswa, M.S. Al-Buriahi, M. Chalermpon, Y.S. Rammah, Influence of ZrO2 on gamma shielding properties of lead borate glasses. Appl. Phy. A. 126, 7 (2020)

    Article  Google Scholar 

  26. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Rad. Phy. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  27. Y. Zhou, D. Yin, S. Zheng, S. Peng, Y. Qi, F. Chen, G. Yang, Improvement of 1.53 µm emission and energy transfer of Yb3+/Er3+ co-doped tellurite glass and fiber. Opt. Fib. Technol. 19, 507–513 (2013)

    Article  CAS  Google Scholar 

  28. A.S. Abouhaswa, Y.S. Rammah, M.I. Sayyed, H.O. Tekin, Synthesis, structure, optical and gamma radiation shielding properties of B2O3-PbO2-Bi2O3 glasses. Composites B 172, 218–225 (2019)

    Article  CAS  Google Scholar 

  29. R. El-Mallawany, Y.S. Rammah, A. El Adawy, Z. Wassel, Optical and thermal properties of some tellurite glasses. Am. J. Opt. Photon. 5(2), 11–18 (2017)

    Article  Google Scholar 

  30. A.A. Ali, Y.S. Rammah, R. El-Mallawany, D. Souri, FTIR and UV spectra of pentaternary borate glasses. Measurement 105, 72–77 (2017)

    Article  Google Scholar 

  31. W.S. AbuShanab, E.B. Moustafa, A.H. Hammad, R.M. Ramadan, A.R. Wassel, Enhancement the structural, optical and nonlinear optical properties of cadmium phosphate glasses by nickel ions. J. Mater. Sci.: Mater Eletron. 30, 18058–18064 (2019)

    CAS  Google Scholar 

  32. P. Bergo, S.T. Reis, W.M. Pontuschka, J.M. Prison, C.C. Motta, Dielectric properties and structural features of barium-iron phosphate glasses. J. Non-Cryst. Solids 336, 159 (2004)

    Article  CAS  Google Scholar 

  33. C. Ivascu, I.B. Cozar, L. Daraban, G. Damian, Spectroscopic investigation of P2O5–CdO–Li2O glass system. J. Non-Cryst. Solids. 359, 60–64 (2013)

    Article  CAS  Google Scholar 

  34. H. Doweidar, Y.M. Moustafa, K. El-Egili, I. Abbas, Infrared spectra of Fe2O3–PbO–P2O5 glasses. J. Vib. Spectrosc. 37, 91–96 (2005)

    Article  CAS  Google Scholar 

  35. A.M. Emara, E.S. Yousef, Structural and optical properties of phosphate zinc-nickel oxide glasses for narrow band pass absorption filters. J. Mod. Opt. 65, 1839–1845 (2018)

    Article  CAS  Google Scholar 

  36. G. Venkateswara Rao, H.D. Shashikala, Optical and mechanical properties of calcium phosphate glasses. Glass Phys. Chem. 40, 303–309 (2014)

    Article  CAS  Google Scholar 

  37. S. Thomas, R. George, M. Rathaiah, V. Venkatramu, S.K. Nayab Rasool, N.V. Unnikrishnan, Structural, vibrational and dielectric studies of Sm3+-doped K-Mg–Al zincfluorophosphate glasses. Phys. B 431, 69–74 (2013)

    Article  CAS  Google Scholar 

  38. M. Abid, M. Et-tabirou, M. Taibi, Structure and DCconductivity of lead sodium ultraphosphate glasses. Mater. Sci. Eng. B 97, 20–24 (2003)

    Article  Google Scholar 

  39. A.N. Regos, R.C. Lucacel, I. Ardelean, Structural study of xK2O·(100–x)[P2O5·CaO] glass system. J. Mater. Sci. 46, 7313–7318 (2011)

    Article  CAS  Google Scholar 

  40. H.A. ElBatal, A.M. Abdelghany, F.H. ElBatal, Kh.M. ElBadry, F.A. Moustaffa, UV–visible and infrared absorption spectra of gamma irradiated CuO-doped lithium phosphate, lead phosphate and zinc phosphate glasses. A comparative study. Phys. B 406, 3694–3703 (2011)

    Article  CAS  Google Scholar 

  41. F.A. Miller, C.H. Wilkins, Infrared spectra and characteristic frequencies of inorganic ions. Anal. Chem. 24, 1253–1294 (1952)

    Article  CAS  Google Scholar 

  42. H. Scholze, Der Einbau des Wassers in Glfisern. Glastech Ber 32, 81–88 (1959)

    CAS  Google Scholar 

  43. P. Znasik, M. Jamnicky, Preparation, infrared spectra and structure of glasses in the system CuCl−Cu2O−(P2O5 + MoO3). J. Non-Cryst. Solids. 146, 74–80 (1992)

    Article  CAS  Google Scholar 

  44. S.V.G.A. Prasad, G.S. Baskaran, N. Veeraiah, Spectroscopic, magnetic and dielectric investigations of BaO–Ga2O3–P2O5 glasses doped by Cu ions. Phys. Status Solidi. 202, 2812–2828 (2005)

    Article  CAS  Google Scholar 

  45. A.S. Abouhaswa, Y.S. Rammah, S.E. Ibrahim, R. El-Mallawany, Optical and electrical properties of lead borate glasses. Electr. Mater. 48, 5624–5631 (2019)

    Article  CAS  Google Scholar 

  46. M.S. Reddy, S.V.G.V.A. Prasad, N. Veeraiah, Valence and coordination of chromium ions in ZnO–Sb2O3–B2O3 glass system by means of spectroscopic and dielectric relaxation studies. Phys. Status Solidi 204, 816–832 (2007)

    Article  CAS  Google Scholar 

  47. G. MuraliKrishna, N. Veeraiah, N. Venkatramaiah, R. Venkatesan, Induced crystallization and physical properties of Li2O–CaF2–P2O5:TiO2 glass system: Part II. Electrical, magnetic and optical properties. J. Alloys Compd. 450, 486–493 (2008)

    Article  CAS  Google Scholar 

  48. G. Srinivasarao, N. Veeraiah, Characterization and physical properties of PbO–As2O3 glasses containing molybdenum ions. J. Solid Chem. 166, 104–117 (2002)

    Article  CAS  Google Scholar 

  49. P.S. Sawadh, D.K. Kulkarni, Structural and magnetic properties of CaMg2Fe16O27. J. Bull. Mater. Sci. 24, 47–50 (2001)

    Article  CAS  Google Scholar 

  50. A.R. James, C. Prakash, G. Prasad, Structural properties and impedance spectroscopy of excimer laser ablated Zr substituted BaTiO3 thin films. J. Phys. D Appl. Phys. 39, 1635–1641 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Rammah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, M.S., Rammah, Y.S., El-Agawany, F.I. et al. Synthesis, structure, physical, dielectric characteristics, and gamma-ray shielding competences of novel P2O5–Li2O–ZnO–CdO glasses. J Mater Sci: Mater Electron 32, 1877–1887 (2021). https://doi.org/10.1007/s10854-020-04956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04956-6

Navigation