Skip to main content
Log in

Reduced graphene oxide-coated carbonized cotton fabric wearable strain sensors with ultralow detection limit

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The booming prosperity of strain sensors promotes the regeneration of wearable electronics. However, strain sensors featured with both large workable range and superb sensitivity are still less than satisfaction. Softness and practicality are also of vital importance for wearable electronics. In this work, a flexible wearable strain sensor based on carbonized cotton fabric coated with reduced graphene oxide (rGO) through polydopamine (rGO/PDA/CCF) modification was fabricated, which exhibits fascinating electrical mechanical performance including a large workable range and superb sensitivity. rGO/PDA/CCF was characterized using scanning electron microscopy (SEM), Raman scattering spectroscopy, and X-ray diffraction (XRD) patterns. The electromechanical performance of the rGO/PDA/CCF strain sensor was evaluated. The strain sensors of rGO/PDA/CCF exhibit a large workable strain range (0–120%) and superb sensitivity with strong durability over 800 cycles. The rGO/PDA/CCF strain sensor has a low detection limit down to 0.01% with a good gauge factor (GF) of 132 within the strain range of 0–1%, and also displays fantastic property in terms of sensitivity in other workable range (GF of 26 and 8 within in a strain range of 1–30% and 30–60%, respectively). rGO/PDA/CCF strain sensor was then applied to track the signal of human motions in real time. rGO/PDA/CCF flexible strain sensor can be utilized in detecting almost all human motions with various dimensions. Additionally, the hydrophobicity and the stability at different temperatures endow the rGO/PDA/CCF strain sensor with high efficiency in various usage, which shows its potential for application in health monitor and wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Adv. Func. Mater. 26, 1678 (2016). https://doi.org/10.1002/adfm.201504755

    Article  CAS  Google Scholar 

  2. J. Gao, L. Wang, Z. Guo et al., Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122778

    Article  Google Scholar 

  3. Y. Cai, J. Shen, G. Ge et al., ACS Nano 12, 56 (2018). https://doi.org/10.1021/acsnano.7b06251

    Article  CAS  Google Scholar 

  4. S. Li, Y. Zhang, Y. Wang et al., InfoMat 2, 184 (2019). https://doi.org/10.1002/inf2.12060

    Article  CAS  Google Scholar 

  5. S. Han, A. Chand, S. Araby et al., Nanotechnology 31, 075702 (2020). https://doi.org/10.1088/1361-6528/ab5042

    Article  CAS  Google Scholar 

  6. S. Chang, J. Li, Y. He, H. Liu, B. Cheng, Sens. Actuators A 294, 45 (2019). https://doi.org/10.1021/acsami.8b11233

    Article  CAS  Google Scholar 

  7. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Nat. Mater. 10, 424 (2011). https://doi.org/10.1038/nmat3001

    Article  CAS  Google Scholar 

  8. H. Wang, W. Chen, B. Chen et al., Small 16, e1905480 (2020). https://doi.org/10.1002/smll.201905480

    Article  CAS  Google Scholar 

  9. J. Ren, W. Zhang, Y. Wang et al., InfoMat 1, 396 (2019). https://doi.org/10.1002/inf2.12030

    Article  CAS  Google Scholar 

  10. Y. Zhang, H. Tang, A. Li et al., J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03811-y

    Article  Google Scholar 

  11. Q. Wang, S. Ling, X. Liang, H. Wang, H. Lu, Y. Zhang, Adv Mater 29, 1808695 (2019). https://doi.org/10.1002/adfm.201808695

    Article  CAS  Google Scholar 

  12. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132 (2010)

    Article  CAS  Google Scholar 

  13. S.-H. Bae, Y. Lee, B.K. Sharma, H.-J. Lee, J.-H. Kim, J.-H. Ahn, Carbon 51, 236 (2013). https://doi.org/10.1016/j.carbon.2012.08.048

    Article  CAS  Google Scholar 

  14. X. Sun, Z. Qin, L. Ye et al., Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122832

    Article  Google Scholar 

  15. Y. Zhai, Y. Yu, K. Zhou et al., Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122985

    Article  Google Scholar 

  16. J. Fang, Z. Zhou, M. Xiao, Z. Lou, Z. Wei, G. Shen, InfoMat 2, 291 (2020). https://doi.org/10.1002/inf2.12067

    Article  CAS  Google Scholar 

  17. Z. Ma, R. Xu, W. Wang, D. Yu, Colloids Surf. A (2019). https://doi.org/10.1016/j.colsurfa.2019.123918

    Article  Google Scholar 

  18. C. Wang, K. Xia, Y. Zhang, D.L. Kaplan, Acc Chem Res 52, 2916 (2019). https://doi.org/10.1021/acs.accounts.9b00333

    Article  CAS  Google Scholar 

  19. C. Wang, X. Li, E. Gao et al., Adv Mater 28, 6640 (2016). https://doi.org/10.1002/adma.201601572

    Article  CAS  Google Scholar 

  20. C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, Y. Zhang, Adv Mater 31, e1801072 (2019). https://doi.org/10.1002/adma.201801072

    Article  CAS  Google Scholar 

  21. Y. Chen, L. Hu, C. Li et al., InfoMat. (2020). https://doi.org/10.1002/inf2.12075

    Article  Google Scholar 

  22. M. Zhang, C. Wang, H. Wang, M. Jian, X. Hao, Y. Zhang, Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201604795

    Article  Google Scholar 

  23. C. Wang, K. Xia, M. Jian, H. Wang, M. Zhang, Y. Zhang, J. Mater. Chem. C 5, 7604 (2017). https://doi.org/10.1039/c7tc01962a

    Article  CAS  Google Scholar 

  24. S. Chang, J. Li, Y. He, H. Liu, B. Cheng, Sens. Actuators A 294, 45 (2019). https://doi.org/10.1016/j.sna.2019.05.011

    Article  CAS  Google Scholar 

  25. Y. Pang, H. Tian, L. Tao et al., ACS Appl. Mater. Interfaces 8, 26458 (2016). https://doi.org/10.1021/acsami.6b08172

    Article  CAS  Google Scholar 

  26. X. You, J. Yang, M. Wang et al., 2D Materials (2019). https://doi.org/10.1088/2053-1583/ab559f

    Article  Google Scholar 

  27. Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, Y. Chen, Physica B 405, 1301 (2010). https://doi.org/10.1016/j.physb.2009.11.071

    Article  CAS  Google Scholar 

  28. S. Wang, H. Ning, N. Hu et al., Adv. Mater. Interfaces (2019). https://doi.org/10.1002/admi.201901507

    Article  Google Scholar 

  29. Z. Yang, Y. Pang, X. Han et al., ACS Nano 12, 9134 (2018). https://doi.org/10.1021/acsnano.8b03391

    Article  CAS  Google Scholar 

  30. B. Yin, Y. Wen, T. Hong et al., ACS Appl Mater Interfaces 9, 32054 (2017). https://doi.org/10.1021/acsami.7b09652

    Article  CAS  Google Scholar 

  31. H. Zhang, J. Zhao, T. Xing, S. Lu, G. Chen, Polymers (Basel) (2019). https://doi.org/10.3390/polym11111774

    Article  Google Scholar 

  32. H. Wang, Z. Liu, X. Zhang et al., Adv. Mater. Interfaces (2016). https://doi.org/10.1002/admi.201600040

    Article  Google Scholar 

  33. C. Wang, R. Guo, J. Lan, S. Jiang, Z. Zhang, Cellulose 24, 4045 (2017). https://doi.org/10.1007/s10570-017-1392-9

    Article  CAS  Google Scholar 

  34. X. Lai, R. Guo, H. Xiao et al., J. Alloy Compd. 788, 1169 (2019). https://doi.org/10.1016/j.jallcom.2019.02.296

    Article  CAS  Google Scholar 

  35. C. Wang, R. Guo, J. Lan, L. Tan, S. Jiang, C. Xiang, J. Mater. Sci.: Mater. Electron. 29, 8010 (2018). https://doi.org/10.1007/s10854-018-8807-8

    Article  CAS  Google Scholar 

  36. Y. Cong, T. Xia, M. Zou et al., J. Mater. Chem. B 2, 3450 (2014). https://doi.org/10.1039/c4tb00460d

    Article  CAS  Google Scholar 

  37. SMD Haeshin Lee, William M. Miller, phillipp B. Messersmith. (2007) SCIENCE 318.

  38. N. Cao, B. Yang, A. Barras, S. Szunerits, R. Boukherroub, Chem. Eng. J. 307, 319 (2017). https://doi.org/10.1016/j.cej.2016.08.105

    Article  CAS  Google Scholar 

  39. R. Reddy, S. Gandla, D. Gupta, Adv. Mater. Interfaces (2019). https://doi.org/10.1002/admi.201900409

    Article  Google Scholar 

  40. B. Li, J. Luo, X. Huang et al., Composites B (2020). https://doi.org/10.1016/j.compositesb.2019.107580

    Article  Google Scholar 

  41. N. Yang, Z.X. Luo, G.R. Zhu et al., ACS Appl. Mater. Interfaces 11, 35987 (2019). https://doi.org/10.1021/acsami.9b11101

    Article  CAS  Google Scholar 

  42. Z. Yang, D.Y. Wang, Y. Pang et al., ACS Appl. Mater. Interfaces 10, 3948 (2018). https://doi.org/10.1021/acsami.7b16284

    Article  CAS  Google Scholar 

  43. Y. Zheng, Y. Li, Y. Zhou et al., ACS Appl. Mater. Interfaces 12, 1474 (2020). https://doi.org/10.1021/acsami.9b17173

    Article  CAS  Google Scholar 

  44. S. Chun, W. Son, D.W. Kim et al., ACS Appl. Mater. Interfaces 11, 16951 (2019). https://doi.org/10.1021/acsami.9b04206

    Article  CAS  Google Scholar 

  45. S. Lu, S. Wang, G. Wang, J. Ma, X. Wang, Sens. Actuators A 295, 200 (2019). https://doi.org/10.1016/j.sna.2019.04.038

    Article  CAS  Google Scholar 

  46. L. Mao, T. Gong, Q. Ai et al., Smart Mater. Struct. 29, 150 (2020). https://doi.org/10.1088/1361-665X/ab52c0

    Article  Google Scholar 

  47. M. Yang, J. Pan, A. Xu et al., Polymers (2018). https://doi.org/10.3390/polym10060568

    Article  Google Scholar 

  48. J.J. Park, W.J. Hyun, S.C. Mun, Y.T. Park, O.O. Park, ACS Appl. Mater. Interfaces 7, 6317 (2015). https://doi.org/10.1021/acsami.5b00695

    Article  CAS  Google Scholar 

  49. Y. Wang, L. Wang, T. Yang et al., Adv. Func. Mater. 24, 4666 (2014). https://doi.org/10.1002/adfm.201400379

    Article  CAS  Google Scholar 

  50. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, ACS Nano 8, 5154 (2014)

    Article  CAS  Google Scholar 

  51. J. Lee, S. Kim, J. Lee et al., Nanoscale 6, 11932 (2014). https://doi.org/10.1039/c4nr03295k

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by Undergraduate Innovation and Entrepreneurship Project (No. T2020108612) and The National Natural Science Foundation of China, The Civil Aviation Administration of China (No. U1833118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronghui Guo or Hongyan Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhang, Y., Li, A. et al. Reduced graphene oxide-coated carbonized cotton fabric wearable strain sensors with ultralow detection limit. J Mater Sci: Mater Electron 31, 17233–17248 (2020). https://doi.org/10.1007/s10854-020-04278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04278-7

Navigation