Skip to main content
Log in

C60 Concentration Influence on MEH-PPV:C60 Bulk Heterojunction-Based Schottky Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the effect of C60 concentration on the performance of poly[2-methoxy-5-(2′-ethylhexoxy-p-phenylene vinylene] (MEH-PPV):C60 blend-based Schottky barrier-based devices. Incorporation of C60 in MEH-PPV leads to a red shift and the reduction of intensity in MEH-PPV absorption spectra. The appearance of a C60 characteristic band in the Raman spectra of the composites indicates the presence of C60 in the blends. A FESEM study reveals that the addition of C60 significantly modifies the surface morphology of the blend films. However, higher concentrations (> 5 wt.%) results in agglomeration of C60 particles. Dark IV measurements allow us to extract various diode parameters including barrier height, ideality factor, and saturation current. Profound variations have been observed in the dominant charge carrier transport mechanism for different C60 concentrations. A photoresponse study demonstrates the enhancement in the photocurrent with the increase in the C60 concentration up to 5 wt.%. Beyond this concentration, agglomeration impedes exciton dissociation and charge transport, which results in a decrease in the photocurrent. Finally, an impedance spectroscopy analysis has been extensively carried out to estimate the internal device parameters, such as junction resistance, capacitance and carrier lifetime. The correlation between these parameters and IV curves has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ramakrishnan, S.J. Devaki, A. Aashish, S. Thomas, M.R. Varma, and N. Kpp, J. Phys. Chem. C 120, 4199 (2016).

    Article  CAS  Google Scholar 

  2. Y. Karzazi, Environ. Sci. 5, 1 (2014).

    Article  Google Scholar 

  3. A. Facchetti, Mater. Today 16, 123 (2013).

    Article  CAS  Google Scholar 

  4. R.H. Guo, C.H. Hsu, C.C. Hua, and S.A. Chen, J. Phys. Chem. B 119, 3320 (2015).

    Article  CAS  Google Scholar 

  5. S.O. Tan, H. Tecimer, and O. Cicek, I.E.E.E. Trans Electron. Devices 64, 984 (2017).

    Article  CAS  Google Scholar 

  6. S. Rathi, G. Chauhan, S.K. Gupta, R. Srivastava, and A. Singh, J. Electron. Mater. 46, 1235 (2017).

    Article  CAS  Google Scholar 

  7. L. Dou, Y. Liu, Z. Hong, G. Li, and Y. Yang, J. Mater. Chem. A 3, 9032 (2015).

    Article  Google Scholar 

  8. A. Mohajeri and A. Omidvar, Phys. Chem. Chem. Phys. 17, 22367 (2015).

    Article  CAS  Google Scholar 

  9. X. Deng, L. Zheng, C. Yang, Y. Li, G. Yu, and Y. Cao, J. Phys. Chem. B 108, 3451 (2004).

    Article  CAS  Google Scholar 

  10. A.R. Gataoullin, M.S. Salina, S.A. Bogdanova, and Y.G. Galyametdinov, Russ. J. Appl. Chem. 86, 1656 (2013).

    Article  CAS  Google Scholar 

  11. M.S. Pratap, R.K. Sreenu, V.R. Reddy, and C. Park, J. Mater. Sci. Mater. Electron. 28, 4847 (2017).

    Article  Google Scholar 

  12. S. Dhar, T. Majumder, and S.P. Mondal, A.C.S. Appl Mater. Interfaces 8, 31822 (2016).

    Article  CAS  Google Scholar 

  13. S. Mahato, RSC Adv. 7, 47125 (2017).

    Article  CAS  Google Scholar 

  14. D. Faiman, S. Goren, E.A. Katz, M. Koltun, N. Melnik, A. Shames, and S. Shtutina, Thin Solid Films 295, 283 (1997).

    Article  CAS  Google Scholar 

  15. J.P. Hare and H.W. Kroto, R. Taylor 589, 57 (2013).

    CAS  Google Scholar 

  16. H. Inani, R. Singhal, P. Sharma, R. Vishnoi, S. Aggarwal, and G.D. Sharma, Vaccum 142, 5 (2017).

    Article  CAS  Google Scholar 

  17. H. Hoppe and N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004).

    Article  CAS  Google Scholar 

  18. O. Dhibi, A. Ltaief, and A. Bouazizi, Fuller. Nanotub. Car. Nanostruct. 21, 894 (2013).

    Article  CAS  Google Scholar 

  19. T. Yasuda, K. Sakamoto, and K. Miki, Mol. Cryst. Liq. Cryst. 653, 125 (2017).

    Article  CAS  Google Scholar 

  20. B.M. Omer, J. Nano Electron. Phys. 5, 6 (2013).

    Google Scholar 

  21. S. Yang, P. Le Rendu, T. Nguyen, and C. Hsu, Thin Film. 15, 144 (2007).

    CAS  Google Scholar 

  22. V. Shrotriya, J. Ouyang, R.J. Tseng, G. Li, and Y. Yang, Chem. Phys. Lett. 411, 138 (2005).

    Article  CAS  Google Scholar 

  23. P.J. Goutam, D.K. Singh, and P.K. Iyer, J. Phys. Chem. C 116, 8196 (2012).

    Article  CAS  Google Scholar 

  24. L. Feng, F. Wang, M.-S. Niu, F. Zheng, P.Q. Bi, X.Y. Yang, W. Xu, and X.-T. Hao, Optim. Mater. Express 7, 4 (2017).

    Google Scholar 

  25. S.H. Yang, T.P. Nguyen, P. Le Rendu, and C.S. Hsu, Thin Solid Films 471, 230 (2005).

    Article  CAS  Google Scholar 

  26. N. Chehata, O. Dhibi, A. Ltaief, A. Farzi, and A. Bouazizi, J. Surf. Eng. Mater. Adv. Technol. 2, 174 (2012).

    CAS  Google Scholar 

  27. E.A. Zakhidov, M.A. Zakhidova, A.M. Kokhkharov, S.Q. Nematov, R.A. Nusretov, and V.O. Kuvondikov, J. Appl. Spectrosc. 85, 82 (2018).

    Article  Google Scholar 

  28. V.V. Bruevich, T.S. Makhmutov, S.G. Elizarov, E.M. Nechvolodova, and D.Y. Paraschuk, J. Chem. Phys. 127, 104905 (2007).

    Article  CAS  Google Scholar 

  29. I.I. Soykal, H. Wang, J. Park, A.P. Li, C. Liang, and V. Schwartz, J. Mater. Chem. A 3, 8667 (2015).

    Article  CAS  Google Scholar 

  30. J.Y. Lee and J.H. Kwon, Appl. Phys. Lett. 86, 1 (2005).

    Google Scholar 

  31. A.K. Singh and R. Prakash, RSC Adv. 2, 5277 (2012).

    Article  CAS  Google Scholar 

  32. C. Yim, N. Mcevoy, H. Kim, E. Rezvani, G.S. Duesberg, and A.C.S. Appl, Mater. Interfaces 5, 6951 (2013).

    Article  CAS  Google Scholar 

  33. M. Koehler, N.A.D. Yamamoto, A.G. Macedo, D.Z. Grodniski, L.S. Roman, and M.G.E. da Luz, Appl. Phys. Lett. 103, 033304 (2013).

    Article  Google Scholar 

  34. P.W.M. Blom and M.C.J.M. Vissenberg, Mater. Sci. Eng. 27, 53 (2000).

    Article  Google Scholar 

  35. P. Rathore, C.M.S. Negi, A.S. Verma, A. Singh, G. Chauhan, A.R. Inigo, and S.K. Gupta, Mater. Res. Express 4, 85905 (2017).

    Article  Google Scholar 

  36. Z. Ahmad, S.M. Abdullah, and K. Sulaiman, Meas. Confed. 46, 2073 (2013).

    Article  Google Scholar 

  37. P. Kovacik, H.E. Assender, and A.A.R. Watt, Sol. Energy Mater. Sol. Cells 117, 22 (2013).

    Article  CAS  Google Scholar 

  38. M.C. Scharber and N.S. Sariciftci, Prog. Polym. Sci. 38, 1929 (2013).

    Article  CAS  Google Scholar 

  39. P. Rathore, C. Mohan, S. Negi, A. Yadav, A. Singh, and S.K. Gupta, Optik 160, 131 (2018).

    Article  CAS  Google Scholar 

  40. W. Zhang, H. Shen, B.W. Guralnick, B.J. Kirby, N.A. Nguyen, R. Remy, C.F. Majkrzak, and M.E. Mackay, Sol. Energy Mater. Sol. Cells 155, 387 (2016).

    Article  CAS  Google Scholar 

  41. G.K. Gupta, A. Garg, and A. Dixit, J. Appl. Phys. 123, 013101 (2018).

    Article  Google Scholar 

  42. W. Chen, T. Wen, and A. Gopalan, The Handbook of Photonics, 2nd ed. (Taylor and Francis: Routledge, 2006), p. 242.

    Google Scholar 

  43. S.R. Raga and Y. Qi, J. Phys. Chem. C 120, 28519 (2016).

    Article  CAS  Google Scholar 

  44. I.M. Seró, G.G. Belmonte, P.P. Boix, M.A. Vázquez, and J. Bisquert, Energy Environ. Sci. 2, 678 (2009).

    Article  Google Scholar 

  45. C.M. Gore, J.O. White, E.D. Wachsman, and V. Thangadurai, J. Mater. Chem. A 2, 2363 (2014).

    Article  CAS  Google Scholar 

  46. G.K. Gupta, A. Garg, and A. Dixit, J. Appl. Phys. 123, 13101 (2018).

    Article  Google Scholar 

  47. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Nat. Commun. 5, 1 (2014).

    Google Scholar 

  48. Z. Li, W. Guo, C. Liu, X. Zhang, S. Li, J. Guo, and L. Zhang, Phys. Chem. Chem. Phys. 5, 20839 (2017).

    Article  Google Scholar 

  49. C. Yim, N. Mcevoy, and G.S. Duesberg, Appl. Phys. Lett. 103, 193106 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from DST, India, under the CURIE program (Grant No. SR/CURIE- Phase-III/01/2015(G)) and the MHRD FAST Programme (Grant No. 5-5/ 2014-TS.VII), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saral K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Negi, C.M.S., Verma, A.S. et al. C60 Concentration Influence on MEH-PPV:C60 Bulk Heterojunction-Based Schottky Devices. J. Electron. Mater. 47, 7023–7033 (2018). https://doi.org/10.1007/s11664-018-6629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6629-3

Keywords

Navigation