Skip to main content
Log in

Structural, optical, mechanical, and electronic properties of Cr-doped alumina

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cr-doped α-Al2O3 samples (Al2−xCrxO3, 0 ≤ x ≤ 0.25; step 0.05) were synthesized by citrate-precursor autocombustion method. The lattice parameters, bond distortion index, crystallite size, and lattice microstrain of the developed system were investigated using Rietveld profile method. The porous nature of the formed samples was elucidated by a scanning electron microscope. The effect of doping on the vibrational band positions was examined using Fourier-transform infrared technique. The photoluminescence emission showed that a red color was mainly exhibited by all samples, while that with x = 0.05 showed the highest intensity. Other colors appear with a small intensity for higher Cr-doped samples. The electronic, optical, and mechanical stability properties of undoped and doped samples were investigated using density-functional theory calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.K. Heiba, N.G. Imam, M.B. Mohamed, Structural optical correlated properties of SnO2/Al2O3 core@ shell heterostructure. J. Mol. Struct. 1115, 156–160 (2016). https://doi.org/10.1016/j.molstruc.2016.02.100

    Article  CAS  Google Scholar 

  2. N.S. Bajaj, S.K. Omanwar, Low-temperature stearic acid sol–gel synthesis of α-Al2O3 quantum dots and its optical properties. J. Sol-Gel Sci. Technol. 75, 1–5 (2015). https://doi.org/10.1007/s10971-015-3667-7

    Article  CAS  Google Scholar 

  3. G.N. Darriba, R. Faccio, M. Rentería, Electronic structure of α-Al2O3 slabs: a local environment study. Physica B 407(16), 3093–3095 (2012). https://doi.org/10.1016/j.physb.2011.12.033

    Article  CAS  Google Scholar 

  4. K.R. Nemade, S.A. Waghuley, Low temperature synthesis of semiconducting α-Al2O3 quantum dots. Ceram. Int. 40, 6109–6113 (2014). https://doi.org/10.1016/j.ceramint.2013.11.062

    Article  CAS  Google Scholar 

  5. L. Trinkler, B. Berzina, D. Jakimovica, J. Grabis, I. Steins, Electronic structure of α-Al2O3 slabs: a local environment study. Opt. Mater. 32(8), 789–795 (2010). https://doi.org/10.1016/j.optmat.2010.01.005

    Article  CAS  Google Scholar 

  6. S.M. Hosseini, A.H.A. Rahnamaye, A. Kompany, Influence of La on electronic structure of α-Al2O3 high k-gate from first principles. Ceram. Int. 31, 671–675 (2005). https://doi.org/10.1016/j.ceramint.2004.07.008

    Article  CAS  Google Scholar 

  7. J. Baltrusaitis, C. Hatch, R. Orlando, Electronic properties and reactivity of simulated Fe3+ and Cr3+ substituted α-Al2O3 (0001) surface. J. Phys. Chem. C 116(35), 18847–18856 (2012). https://doi.org/10.1021/jp3053899

    Article  CAS  Google Scholar 

  8. Z.K. Heiba, M.B. Mohamed, A.M. Wahba, N.G. Imam, Structural, optical, and electronic characterization of Fe-doped alumina nanoparticles. J. Electron. Mater. 47(1), 711–720 (2018). https://doi.org/10.1007/s11664-017-5830-0

    Article  CAS  Google Scholar 

  9. S.S. Lin, The optical properties of hydrophilic Ti-doped Al2O3 films. Opt. Mater. 36(9), 1488–1493 (2014). https://doi.org/10.1016/j.optmat.2014.04.008

    Article  CAS  Google Scholar 

  10. S. Babar, A.U. Mane, A.Y. Gil, E. Mohimi, R.T. Haasch, J.W. Elam, W:Al2O3 nano-composite thin films with tunable optical properties prepared by atomic layer deposition. J. Phys. Chem. C 120(27), 14681–14689 (2016). https://doi.org/10.1021/acs.jpcc.6b03823

    Article  CAS  Google Scholar 

  11. P.F. Moulton, J.G. Cederberg, K.T. Stevens, G. Foundos, M. Koselja, J. Preclikova, Characterization of absorption bands in Ti:sapphire crystals. Opt. Mater. Express 9(5), 2216–2251 (2019). https://doi.org/10.1364/OME.9.002216

    Article  CAS  Google Scholar 

  12. F.D. Cortes-Vega, W. Yang, J. Zarate‐Medina, S.R. Brankovic, H.A. Calderon, F.C.R. Hernandez, Mechanochemical synthesis of α‐Al2O3‐Cr3+ (Ruby) and χ‐Al2O3. J. Am. Ceram. Soc. 102(3), 976–980 (2019). https://doi.org/10.1111/jace.16171

    Article  CAS  Google Scholar 

  13. K.S. Choudhari, N. Deepak Hebbar, S.D. Kulkarni, C. Santhosh, S.D. George, Cr3+ doped nanoporous anodic alumina: facile microwave assisted doping to realize nanoporous ruby and phase dependent photoluminescence. Ceram. Int. 45(9), 12130–12137 (2019). https://doi.org/10.1016/j.ceramint.2019.03.115

    Article  CAS  Google Scholar 

  14. O.A. Capeloto, N.E. de Souza, I.A. Santos et al., Preparation, structural and spectroscopic study of solgelsynthesized Cr3+:Al2O3 powder. Appl. Sci. 1, 1597 (2019). https://doi.org/10.1007/s42452-019-1631-9

    Article  CAS  Google Scholar 

  15. L. Grigorjeva, A. Zolotarjovs, D. Millers, K. Smits, P. Krug, J. Stollenwerk, A. Osman, T. Tenostendarp, Magnetron sputtering fabrication of α-Al2O3:Cr powders and their thermo-luminescence properties. Radiat. Meas. 119, 140–143 (2018). https://doi.org/10.1016/j.radmeas.2018.10.009

    Article  CAS  Google Scholar 

  16. RIanoș Muntean E., R. Băbuță, Combustion synthesis of pink chromium-doped alumina with excellent near-infrared reflective properties. Ceram. Int. 43, 2568–2572 (2017). https://doi.org/10.1016/j.ceramint.2016.11.061

    Article  CAS  Google Scholar 

  17. P.P. Hankare, U.B. Sankpal, R.P. Patil, A.V. Jadhav, K.M. Garadkar, B.K. Chougule, Magnetic and dielectric studies of nanocrystalline zinc substituted Cu–Mn ferrites. J. Magn. Magn. Mater. 323, 389–393 (2011). https://doi.org/10.1016/j.jmmm.2010.08.050

    Article  CAS  Google Scholar 

  18. T. Alone, S.E. Shirsath, R.H. Kadam, K.M. Jadhav, Chemical synthesis, structural and magnetic properties of nano-structured Co–Zn–Fe–Cr ferrite. J. Alloys Compd. 509, 5055–5060 (2011). https://doi.org/10.1016/j.jallcom.2011.02.006

    Article  CAS  Google Scholar 

  19. Z.K. Heiba, M.B. Mohamed, N.Y. Mostafa, Structural, magnetic, and optical properties of nano-sized Ni0.85Se. Int. J. Appl. Ceram. Technol. 16(4), 1590–1595 (2019). https://doi.org/10.1111/ijac.13181

    Article  CAS  Google Scholar 

  20. Y. Köseoğlu, A. Baykal, F. Gözüak, H. Kavas, Structural and magnetic properties of CoxZn1–xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28, 2887–2892 (2009). https://doi.org/10.1016/j.poly.2009.06.061

    Article  CAS  Google Scholar 

  21. A.M. Wahba, N.G. Imam, M.B. Mohamed, Flower-like morphology of blue and greenish-gray ZnCoxAl2–xO4 nanopigments. J. Mol. Struct. 1105, 61–69 (2016). https://doi.org/10.1016/j.molstruc.2015.10.052

    Article  CAS  Google Scholar 

  22. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  23. L. Lutterotti, Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res. B. 268, 334–340 (2010). https://doi.org/10.1016/j.nimb.2009.09.053

    Article  CAS  Google Scholar 

  24. J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992). https://doi.org/10.1103/PhysRevB.45.13244

    Article  CAS  Google Scholar 

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  26. D.K. Nguyen, H. Lee, I.-T. Kim, Synthesis and thermochromic properties of Cr-doped Al2O3 for a reversible thermochromic sensor. Materials 10(5), 1–14 (2017). https://doi.org/10.3390/ma10050476

    Article  CAS  Google Scholar 

  27. H. Xuanmeng, Z. Zhenfeng, L. Hui, F. Lu, In-situ Cr-doped alumina nanorods powder prepared by hydrothermal method. Rare Metal Mater. Eng. 45(7), 1659–1663 (2016). https://doi.org/10.1016/S1875-5372(16)30135-7

    Article  Google Scholar 

  28. P. Tarte, Infrared spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim. Acta 123A, 2127 (1967). https://doi.org/10.1016/0584-8539(67)80100-4

    Article  Google Scholar 

  29. D. Liu, Z. Zhu, H. Liu, Z. Zhang, Y. Zhang, G. Li, Al2O3:Cr3+ microfibers by hydrothermal route: luminescence properties. Mater. Res. Bull. 47, 2332–2335 (2012). https://doi.org/10.1016/j.materresbull.2012.05.026

    Article  CAS  Google Scholar 

  30. G. Rani, P.D. Sahare, Structural and photoluminescent properties of Al2O3:Cr3+ nanoparticles via solution combustion synthesis method. Adv. Powder Technol. 25, 767–772 (2014). https://doi.org/10.1016/j.apt.2013.11.009

    Article  CAS  Google Scholar 

  31. G.C. da Cunha, C.M. Abreu, J.A. Peixoto, L.P. Romão, Z.S. Macedo, A novel method for fabricating Cr-doped Alpha-Al2O3 nanoparticles: green aapproach to nanotechnology. J. Inorg. Organomet. Polym. 27(3), 674–684 (2017). https://doi.org/10.1007/s10904-017-0510-3

    Article  CAS  Google Scholar 

  32. T. Chihi, M. Fatmi, B. Ghebouli, M.A. Ghebouli, Structural, elastic, thermoelastic and electronic properties of M2O3 (M = Cr, Fe, Al) compounds: experimental and theoretical study. Results Phys. 12, 725–731 (2019). https://doi.org/10.1016/j.rinp.2018.12.034

    Article  Google Scholar 

  33. J. Feng, B. Xiao, J. Chen, Y. Du, R. Zhou, Stability, thermal and mechanical properties of PtxAly compounds. Mater. Des. 32, 3231–3239 (2011). https://doi.org/10.1016/j.matdes.2011.02.043

    Article  CAS  Google Scholar 

  34. W. Voigt, Lehrbuch, Der Kristallphysik (Teubner, Leipzig, 1928), p. 716

    Google Scholar 

  35. A.Z. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Angew. Math. Mech. 9, 49–58 (1929). https://doi.org/10.1002/zamm.19290090104

    Article  CAS  Google Scholar 

  36. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect A 65, 349–354 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  Google Scholar 

  37. S. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London, Edinburgh, Dublin Philos. Mag. J. Sci. 45, 823–843 (1954). https://doi.org/10.1080/14786440808520496

    Article  CAS  Google Scholar 

  38. Md.A. Rahman, Md.Z. Rahaman, Md.A.R. Sarker, First principles investigation of structural, elastic, electronic and optical properties of HgGeB2 (B=P, As) chalcopyrite semiconductors. Comput. Condens. Matter. 9, 19–26 (2016). https://doi.org/10.1016/j.cocom.2016.09.001

    Article  Google Scholar 

  39. Md.A. Rahman, Md.Z. Rahaman, Md.A.R. Sarker, The structural, elastic, electronic and optical properties of MgCu under pressure: a first-principles study. Int. J. Mod. Phys. B 30, 1–13 (2016). https://doi.org/10.1142/S021797921650199X

    Article  CAS  Google Scholar 

  40. S.Z. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvag, B.G. Svensson, S. Se, Electronic structure and optical properties of ZnX (X = O, S, Se, Te). Phys. Rev. B 75, 1–14 (2007). https://doi.org/10.1103/PhysRevB.75.155104

    Article  CAS  Google Scholar 

  41. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962). https://doi.org/10.1103/PhysRev.128.2093

    Article  CAS  Google Scholar 

  42. A. Bouhemadou, R. Khenata, Ab initio study of the structural, elastic, electronic and optical properties of the antiperovskite SbNMg3. Comput. Mater. Sci. 39, 803–807 (2007). https://doi.org/10.1016/j.commatsci.2006.10.003

    Article  CAS  Google Scholar 

  43. C. Li, B. Wang, R. Wang, H. Wang, X. Lu, First-principles study of structural, elastic, electronic, and optical properties of orthorhombic BiGaO3. Comput. Mater. Sci. 42(4), 614–618 (2008). https://doi.org/10.1016/j.commatsci.2007.09.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bakr Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B. & Wahba, A.M. Structural, optical, mechanical, and electronic properties of Cr-doped alumina. J Mater Sci: Mater Electron 31, 14645–14657 (2020). https://doi.org/10.1007/s10854-020-04027-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04027-w

Navigation