Skip to main content
Log in

Phase change in Ge–Se chalcogenide glasses and its implications on optical temperature-sensing devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Reversible amorphous to crystalline phase transition introduces high contrast in the optical and electrical properties of chalcogenide glasses. This effect can be utilized by a designated temperature sensor based on optical power measurement as a function of temperature for temperature monitoring. For this purpose, crystallization kinetics and crystal structures of Ge–Se binary chalcogenide glasses were studied with Differential Scanning Calorimetry, Raman spectroscopy, and X-ray diffraction spectroscopy. The refractive index as a function of temperature was also measured to correlate the effect of structural rearrangement at the phase transition point with optical properties. Based on these data, the crystallization process is interpreted as being homogeneous for the stoichiometric composition and heterogeneous for either chalcogenide- or germanium-rich compositions. This specifically affects the optical performance of the films as a function of temperature and suggests the application of chalcogen- or germanium-rich compositions for building the sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.R. Ovshinsky, Phys. Rev. Lett. 21(20), 1450–1453 (1968). https://doi.org/10.1103/PhysRevLett.21.1450

    Article  Google Scholar 

  2. A. Zakery, S.R. Elliott, J. Non-Cryst. Solids 330(1), 1–12 (2003). https://doi.org/10.1016/j.jnoncrysol.2003.08.064

    Article  CAS  Google Scholar 

  3. A.P. Kovalskyy et al., JM3 8(4), 04301 (2009). https://doi.org/10.1117/1.3273966

    Article  CAS  Google Scholar 

  4. M.R. Latif et al., J. Mater. Sci. 30(3), 2389–2402 (2019). https://doi.org/10.1007/s10854-018-0512-0

    Article  CAS  Google Scholar 

  5. E.J. Skoug, D.T. Morelli, Phys. Rev. Lett. 107(23), 235901 (2011). https://doi.org/10.1103/PhysRevLett.107.235901

    Article  CAS  Google Scholar 

  6. V. Oliveira et al., J. Phys. Chem. A 121(36), 6845–6862 (2017). https://doi.org/10.1021/acs.jpca.7b06479

    Article  CAS  Google Scholar 

  7. A.K. Varshneya, J.C. Mauro, Fundamentals of Inorganic Glasses, 3rd edn. (Academic Press Inc., New York, 2019)

    Google Scholar 

  8. S. Sen, B.G. Aitken, Phys. Rev. B 66(13), 134204 (2002). https://doi.org/10.1103/PhysRevB.66.134204

    Article  CAS  Google Scholar 

  9. Y. Sakaguchi et al., Phys. Rev. Mater. 3(3), 035601 (2019). https://doi.org/10.1103/PhysRevMaterials.3.035601

    Article  CAS  Google Scholar 

  10. Y. Sakaguchi et al., J. Non-Cryst. Solids 355(37), 1792–1796 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.04.064

    Article  CAS  Google Scholar 

  11. C. Lin et al., J. Non-Cryst. Solids 355(7), 438–440 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.01.004

    Article  CAS  Google Scholar 

  12. M. Mitkova et al., Phys. Stat. Sol A 207(3), 621–626 (2010). https://doi.org/10.1002/pssa.200982902

    Article  CAS  Google Scholar 

  13. J.D. Neufville, H.K. Rockstad, In Amorphous and Liquid Semiconductors, vol. 1 (Taylor and Francis, London, 1974), p. 419

    Google Scholar 

  14. https://goldbook.iupac.org/terms/view/G02641 (Accessed April 14 2020)

  15. E. Černošková et al., J. Phys. Chem. Solids 66(1), 185–189 (2005). https://doi.org/10.1016/j.jpcs.2004.09.007

    Article  CAS  Google Scholar 

  16. P. Chen et al., J. Phys. 22(6), 065104 (2010). https://doi.org/10.1088/0953-8984/22/6/065104

    Article  CAS  Google Scholar 

  17. P. Boolchand et al., Phys. State Solid B 255(6), 1800027 (2018). https://doi.org/10.1002/pssb.201800027

    Article  CAS  Google Scholar 

  18. G. Saffarini, Appl. Phys. A 74(2), 283–285 (2002). https://doi.org/10.1007/s003390100894

    Article  CAS  Google Scholar 

  19. A. Hrubý, Czech J. Phys. 22(11), 1187–1193 (1972). https://doi.org/10.1007/BF01690134

    Article  Google Scholar 

  20. K. Murase, Directions in Condensed Matter Physics, 17 (World Scientific, Singapore, 2000), pp. 415–463

    Google Scholar 

  21. V.G. Dittmar, H. Schafer, Acta Cryst. B32, 2726–2728 (1976)

    Article  CAS  Google Scholar 

  22. S.S. Fouad, Phys. B 293(3), 276–282 (2001). https://doi.org/10.1016/S0921-4526(00)00563-9

    Article  CAS  Google Scholar 

  23. O.I. Shpotyuk and A.P. Kovalskiy, Compositional Trends in Radiation-Optical Properties of Chalcogenide Glasses p. 12

  24. M. Shpotyuk et al., Comput. Mater. Sci. 113, 112–116 (2016). https://doi.org/10.1016/j.commatsci.2015.11.035

    Article  CAS  Google Scholar 

  25. A.R. Barik et al., Sci. Rep. 4(1), 1–5 (2014). https://doi.org/10.1038/srep03686

    Article  CAS  Google Scholar 

  26. S. Bhosle et al., Solid State Commun. 151(24), 1851–1855 (2011). https://doi.org/10.1016/j.ssc.2011.10.016

    Article  CAS  Google Scholar 

  27. S. Ravindren et al., J. Chem. Phys. 140(13), 134501 (2014). https://doi.org/10.1063/1.4869107

    Article  CAS  Google Scholar 

  28. X. Feng et al., Phys. Rev. Lett. 78(23), 4422–4425 (1997). https://doi.org/10.1103/PhysRevLett.78.4422

    Article  CAS  Google Scholar 

  29. Y. Wang et al., J. Non-Cryst. Solids 299–302, 963–967 (2002). https://doi.org/10.1016/S0022-3093(01)01060-2

    Article  Google Scholar 

  30. E. Sleeckx et al., J. Non-Cryst. Solids 198–200, 723–727 (1996). https://doi.org/10.1016/0022-3093(96)00030-0

    Article  Google Scholar 

  31. K. Jackson, Phys. State Solid B 217(1), 293–310 (2000). https://doi.org/10.1002/(SICI)1521-3951(200001)217:1%3c293:AID-PSSB293%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  32. V.V. Poborchii et al., Chem. Phys. Lett. 280(1), 17–23 (1997). https://doi.org/10.1016/S0009-2614(97)01087-7

    Article  CAS  Google Scholar 

  33. V.V. Poborchii et al., Phys. Rev. Lett. 82(9), 1955–1958 (1999). https://doi.org/10.1103/PhysRevLett.82.1955

    Article  CAS  Google Scholar 

  34. R. Holomb et al., J. Non-Cryst. Solids 373–374, 51–56 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.04.032

    Article  CAS  Google Scholar 

  35. R. Holomb et al., Philos. Mag. 93(19), 2549–2562 (2013). https://doi.org/10.1080/14786435.2013.778426

    Article  CAS  Google Scholar 

  36. K. Inoue et al., Solid State Commun. 79(11), 905–910 (1991). https://doi.org/10.1016/0038-1098(91)90441-W

    Article  CAS  Google Scholar 

  37. Z.V. Popovic et al., J. Non-Cryst. Solids 227–230, 794–798 (1998). https://doi.org/10.1016/S0022-3093(98)00172-0

    Article  Google Scholar 

  38. Z. Jiao et al., Surf. Sci. 686, 17–21 (2019). https://doi.org/10.1016/j.susc.2019.03.007

    Article  CAS  Google Scholar 

  39. U. Köster, P. Weiss, J. Non-Cryst, Solids 17(3), 359–368 (1975). https://doi.org/10.1016/0022-3093(75)90126-X

    Article  Google Scholar 

  40. D. Nesheva et al., Proceedings of International Conference on Radiation in Various Fields of Research (RAD 2012). pp. 19–22

  41. N. Mehta et al., Mater. Res. Bull. 41(9), 1664–1672 (2006). https://doi.org/10.1016/j.materresbull.2006.02.024

    Article  CAS  Google Scholar 

  42. S.A. Fayek, M. Fadel, J. Ovonic Research 5, 43 (2009)

    CAS  Google Scholar 

  43. Y. Wang et al., EPL 52(6), 633 (2000). https://doi.org/10.1209/epl/i2000-00485-9

    Article  CAS  Google Scholar 

  44. M.M.A. Imran et al., J. Non-Cryst. Solids 298(1), 53–59 (2002). https://doi.org/10.1016/S0022-3093(01)01033-X

    Article  CAS  Google Scholar 

  45. P.K. Jain et al., Chalcogenide Lett 6(3), 97–107 (2009)

    CAS  Google Scholar 

  46. P. Boolchand, Asian J. Phys. 9(3), 709–721 (2000)

    CAS  Google Scholar 

  47. J. Málek, J. Non-Cryst. Solids 107(2), 323–327 (1989). https://doi.org/10.1016/0022-3093(89)90479-1

    Article  Google Scholar 

  48. V.M. Fokin et al., J. Non-Cryst. Solids 447, 35–44 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.05.017

    Article  CAS  Google Scholar 

  49. H.E. Kissinger et al., Res. Natl. Bur. Stan. 57(4), 217 (1956). https://doi.org/10.6028/jres.057.026

    Article  CAS  Google Scholar 

  50. T. Ozawa, J. Therm. Anal. Calorim. 2(3), 301–324 (1970). https://doi.org/10.1007/BF01911411

    Article  CAS  Google Scholar 

  51. J.A. Augis, J.E. Bennett, J. Therm. Anal. Calorim. 13(2), 283–292 (1978). https://doi.org/10.1007/BF01912301

    Article  CAS  Google Scholar 

  52. J.E. Shelby, Introduction to Glass Science and Technology (Royal Society of Chemistry, 2005)

  53. R.E. Smallman, A.H.W. Ngan, Physical Metallurgy and Advanced Materials, 7th edn. (Butterworth-Heinemann, 2007)

  54. K. Matusita et al., J. Mater. Sci. 19(1), 291–296 (1984). https://doi.org/10.1007/BF02403137

    Article  CAS  Google Scholar 

  55. J.S. Blázquez et al., Acta Mater. 53(8), 2305–2311 (2005). https://doi.org/10.1016/j.actamat.2005.01.037

    Article  CAS  Google Scholar 

  56. M. Avrami, J. Chem. Phys. 7(12), 1103–1112 (1939). https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  57. M. Avrami, J. Chem. Phys. 8(2), 212–224 (1940). https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  58. M. Avrami, J. Chem. Phys. 9(2), 177–184 (1941). https://doi.org/10.1063/1.1750872

    Article  CAS  Google Scholar 

  59. P. Gong et al., J. Mater. Res. 30(18), 2772–2782 (2015). https://doi.org/10.1557/jmr.2015.253

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the US Department of Energy (DOE), grant number DOE-NE 0008691. The authors gracefully acknowledge DOE’s contribution to the advancement of our research. The authors thank Peter Miranda and Travis Gabel of the Idaho Microfabrication Lab and Advanced Nano-Material Lab at Boise State University for their support in the fabrication and characterization of films with DSC. The authors also acknowledge the usage of Dr. Dimitri Tenne’s Raman spectroscopy system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Mitkova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed Simon, AA., Badamchi, B., Subbaraman, H. et al. Phase change in Ge–Se chalcogenide glasses and its implications on optical temperature-sensing devices. J Mater Sci: Mater Electron 31, 11211–11226 (2020). https://doi.org/10.1007/s10854-020-03669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03669-0

Navigation