Skip to main content
Log in

Structure and photo-induced effects in elemental chalcogens: a review on Raman scattering

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Much progress has been made over a long period, spanning more than a century, in understanding the atomic arrangement on various length scales of non-crystalline chalcogens and their transitions upon certain external stimuli. However, it is broadly admitted that there are still several unsettled issues that call for proper rationalization. The current review presents an assessment of Raman scattering studies of non-crystalline phases of elemental chalcogens and their mixtures. First, a few remarks on the analysis of Raman data related to polarization details and spectra reduction are presented. The effect of temperature, pressure, and irradiation on the structure of chalcogens is reviewed in detail. As only selenium can form a stable glass at ambient conditions, the interest on sulfur and tellurium has been placed in the melt and the amorphous phase, respectively, whereas reference is also made to the sporadic structural studies of glassy sulfur at low temperatures. It is shown how Raman scattering can be exploited to explore unique phenomena emerging in the liquid state of sulfur, offering valuable information on the details of λ-transition including various thermodynamic-related properties. The subtle nature of this transition in selenium is also discussed. Tellurium is not only impossible to be prepared in the bulk glassy state, but also forms a very liable to crystallization amorphous film. Therefore, apart from the melt, the emphasis is placed on light-induced nanostructuring and effects related to photo-amorphization and photo-oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted from [A. G. Kalampounias, K. S. Andrikopoulos, S. N. Yannopoulos, J. Chem. Phys. 118, 8460–8467 (2003)], with the permission of AIP Publishing

Fig. 3

Reprinted from [A. G. Kalampounias, K. S. Andrikopoulos, S. N. Yannopoulos, J. Chem. Phys. 118, 8460–8467 (2003)], with the permission of AIP Publishing

Fig. 4

Reprinted from [K. S. Andrikopoulos, A. Kalampounias, O. Falagara, S. N. Yannopoulos, J. Chem. Phys. 139, 124,501 (2013)], with the permission of AIP Publishing

Fig. 5

Reprinted from [K. S. Andrikopoulos, A. Kalampounias, O. Falagara, S. N. Yannopoulos, J. Chem. Phys. 139, 124501 (2013)], with the permission of AIP Publishing

Fig. 6

[K. S. Andrikopoulos, A. G. Kalampounias, S. N. Yannopoulos, Soft Matter 7, 3404–3411 (2011)]—Reproduced by permission of The Royal Society of Chemistry

Fig. 7

[K. S. Andrikopoulos, A. G. Kalampounias, S. N. Yannopoulos, Soft Matter 7, 3404–3411 (2011)]—Reproduced by permission of The Royal Society of Chemistry

Fig. 8

Reprinted (Figs. 1, 2) with permission from [K. S. Andrikopoulos, A. G. Kalampounias, S. N. Yannopoulos, Phys. Rev. B 72, 014203 (2005).] Copyright (2005) by the American Physical Society

Fig. 9

Reprinted (Figs. 4, 5) with permission from [K. S. Andrikopoulos, A. G. Kalampounias, S. N. Yannopoulos, Phys. Rev. B 72, 014,203 (2005).] Copyright (2005) by the American Physical Society

Fig. 10

Adapted from Ref. [77]. b Polarized (HH) and depolarized (HV) Raman spectra of bulk glassy Se recorded at 9.8 K using the 799.3 nm as the excitation source. Reprinted from Ref. [76]. Copyright © 1976 Published by Elsevier Ltd

Fig. 11

Adapted from Ref. [79]. Copyright © 1981 Published by Elsevier Ltd

Fig. 12

Reprinted from [S.N. Yannopoulos, K. S. Andrikopoulos, J. Chem. Phys. 121, 4747–4758 (2004)], with the permission of AIP Publishing

Fig. 13

Reprinted (Figs. 2, 3) with permission from [S.N. Yannopoulos, K. S. Andrikopoulos, Phys. Rev. B 69, 144206] Copyright (2004) by the American Physical Society

Fig. 14

Copyright © 2011, Springer Nature. b Temperature dependence of the “hydrodynamic: radius of Se cluster in the supercooled and molten state. Reprinted from Ref. [92]. Copyright © 2009 Elsevier B.V. All rights reserved

Fig. 15

Copyright © 1972 WILEY‐VCH Verlag GmbH & Co. KGaA. c Schematic representation of the atomic motion of the optic modes of the trigonal chain. A1: symmetric breathing mode. A2: rigid chain rotation. E (upper): asymmetric stretching. E (bottom): intrachain rotation

Fig. 16
Fig. 17

Articles under CC BY 4.0 © [1994] The Author(s). Originally published in J. Phys. Soc. Jpn. 63, (1994), Quasielastic and Inelastic Neutron Scatterings of Liquid Tellurium, https://doi.org/10.1143/JPSJ.63.3200

Fig. 18

Reprinted with permission from (H. Ikemoto, A. Goyo, T. Miyanaga, Size Dependence of the Local Structure and Atomic Correlations in Tellurium Nanoparticles, J. Phys. Chem. C 115, 2931–2937). Copyright © (2011) American Chemical Society. b Comparison between the Raman spectra of bulk t-Te and Te nanoparticles. Adapted by permission: [Springer Nature] [J. Nanopart. Res. (Synthesis of t-Te and a-Se nanospheres using continuous wave visible light, 21(10): art.no.218 (2019).)] Copyright © 2019, Springer Nature

Fig. 19

Adapted with permission from (Structure and Chemical Order in S–Se Binary Glasses, B. Yuan, et al., J. Phys. Chem. B (2018) 122(50), 12219–12226). Copyright © (2018), American Chemical Society

Fig. 20

Adapted with permission from (Molecular structure of dilute vitreous selenium-sulfur and selenium-tellurium alloys, A. T. Ward, J. Phys. Chem. (1970) 74(23), 4110–4115). Copyright © (1970), American Chemical Society. b Raman spectra of binary SexTe1‐x glasses; top: 0.8 ≤ x ≤ 1.0, bottom: 0.5 ≤ x ≤ 0.8. Reprinted from Ref. [135]. © 2018 The American Ceramic Society

Fig. 21

Adapted from Ref. [141]

Fig. 22

Adapted from Ref. [155]. Rights managed by AIP Publishing

Fig. 23

Adapted from Ref. [156]. Copyright © 2008 Elsevier B.V. All rights reserved

Fig. 24

Adapted by permission: [Springer Nature] [Sci. Rep. (Laser-assisted growth of t-Te nanotubes and their controlled photo-induced unzipping to ultrathin core-Te/sheath-TeO2 nanowires, 3: art. no.1209 (2013)]

Fig. 25

Adapted from Ref. [100]. Rights managed by AIP Publishing

Similar content being viewed by others

References

  1. M.P. Madan, Shaw, The Physics and Applications of Amorphous Semiconductors (Academic Press, San Diego, 1988)

    Google Scholar 

  2. J.-L. Adam, X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publ, Philadelphia, 2014)

    Google Scholar 

  3. S.R. Elliott, Physics of Amorphous Materials, 2nd edn. (Longman Scientific, New York, 1990)

    Google Scholar 

  4. See for example the relevant chapters in Photo-induced Metastability in Amorphous Semiconductors, edited by A.V. Kolobov, (Wiley-VCH, 2003).

  5. Z. Borisova, Glassy Semiconductors (Plenum, New York, 1981)

    Google Scholar 

  6. A. Feltz, Amorphous Inorganic Materials and Glasses (VCH Publishers, New York, 1993)

    Google Scholar 

  7. T. Ward, Adv. Chem. Ser. 110, 163–178 (1972)

    CAS  Google Scholar 

  8. C. Meyer, Rev. 76, 367–388 (1976)

    CAS  Google Scholar 

  9. R. Steudel, Top. Curr. Chem. 230, 81–116 (2003)

    CAS  Google Scholar 

  10. S.C. Greer, Ann. Rev. Phys. Chem. 53, 173–200 (2002)

    CAS  Google Scholar 

  11. A. Smith, W.B. Holmes, E.S. Hall, J. Am. Chem. Soc. 27, 797–820 (1905)

    Google Scholar 

  12. A. Smith, W.B. Holmes, J. Am. Chem. Soc. 27, 979–1013 (1905)

    CAS  Google Scholar 

  13. J. Gradie, S.J. Ostro, P.C. Thomas, J. Veverka, J. Non-Cryst. Solids 67, 421–432 (1984)

    CAS  Google Scholar 

  14. R.A. Zingaro, W.C. Cooper, Selenium (Van Nostrand Reinhold, New York, 1974)

    Google Scholar 

  15. E. Gerlach, P. Grosse (eds.), The Physics of Selenium and Tellurium (Springer, Berlin, 1979)

    Google Scholar 

  16. S. Kasap, J.F. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K.S. Karim, J.A. Rowlands, Sensors 11, 5112–5157 (2011)

    CAS  Google Scholar 

  17. A. Eisenberg, A.V. Tobolsky, J. Polym. Sci. 46, 19–28 (1960)

    CAS  Google Scholar 

  18. K. Tanaka, Chapter 19-amorphous selenium and nanostructures, in Springer Handbook of Glass, ed. by J.D. Musgraves, J. Hu, L. Calvez (Springer, New York, 2019), pp. 645–686

    Google Scholar 

  19. C.E. Housecroft, A.G. Sharpe, Inorganic Chemistry, 4th edn. (Pearson Education Ltd., England, 2012)

    Google Scholar 

  20. R.O. Jones, J. Phys. 30, 153001 (2018)

    CAS  Google Scholar 

  21. R. Shuker, R. Gammon, Phys. Rev. Lett. 25, 222 (1970)

    CAS  Google Scholar 

  22. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976)

    Google Scholar 

  23. G. Kalampounias, K.S. Andrikopoulos, S.N. Yannopoulos, J. Chem. Phys. 118, 8460–8467 (2003)

    CAS  Google Scholar 

  24. J. Donohue, The Structure of the Elements (Wiley, New York, 1982)

    Google Scholar 

  25. R.F. Bacon, R. Fanelli, J. Am. Chem. Soc. 65, 639–648 (1943)

    CAS  Google Scholar 

  26. T. Scopigno, S.N. Yannopoulos, F. Scarponi, K.S. Andrikopoulos, D. Fioretto, G. Ruocco, Phys. Rev. Lett. 99, 025701 (2007)

    CAS  Google Scholar 

  27. G. Gee, Trans. Farad. Soc. 48, 515–526 (1952)

    CAS  Google Scholar 

  28. V. Tobolsky, A. Eisenberg, J. Am. Chem. Soc. 81, 780–782 (1959)

    CAS  Google Scholar 

  29. J.C. Wheeler, S.J. Kennedy, P. Pfeuty, Phys. Rev. Lett. 45, 1748–1751 (1980)

    CAS  Google Scholar 

  30. J. Dudowicz, K.F. Freed, J.F. Douglas, J. Chem. Phys. 111, 7116–7130 (1999)

    CAS  Google Scholar 

  31. P. Ballone, R.O. Jones, J. Chem. Phys. 119, 8704–8715 (2003)

    CAS  Google Scholar 

  32. K.S. Andrikopoulos, A.G. Kalampounias, S.N. Yannopoulos, J. Chem. Phys. 124, 146101 (2006)

    CAS  Google Scholar 

  33. J.C. Koh, W. Klement, J. Phys. Chem. 74, 4280–5000 (1970)

    Google Scholar 

  34. S.C. Greer, J. Chem. Phys. 84, 6984–6988 (1986)

    CAS  Google Scholar 

  35. K.S. Andrikopoulos, A.G. Kalampounias, S.N. Yannopoulos, Experimental Investigation of Liquid Sulfur’s λ-Transition: In Situ Determination of the Extent of Polymerization and Rounding Effects on the Transition of Confined Sulfur, Recent Research Developments in Physics, vol. 4 (Trans-world Research Publications, Kerala, 2003), pp. 809–833

    Google Scholar 

  36. V. Tobolsky, W. MacKnight, R.B. Beevers, V.D. Gupta, Polymer 4, 423–427 (1963)

    CAS  Google Scholar 

  37. S.R. Das, K. Gosh, Indian J. Phys. 13, 91–105 (1939)

    CAS  Google Scholar 

  38. M. Stolz, R. Winter, W.S. Howells, R.L. McGreevy, P.A. Egelstaff, J. Phys. 6, 3619–3628 (1994)

    CAS  Google Scholar 

  39. G. Kalampounias, D.T. Kastrissios, S.N. Yannopoulos, J. Non-Cryst. Solids 326–327, 115–119 (2003)

    Google Scholar 

  40. B. Ruta, G. Monaco, V.M. Giordano, F. Scarponi, D. Fioretto, G. Ruocco, K.S. Andrikopoulos, S.N. Yannopoulos, J. Phys. Chem. B 115, 14052–14063 (2011)

    CAS  Google Scholar 

  41. K.S. Andrikopoulos, A. Kalampounias, O. Falagara, S.N. Yannopoulos, J. Chem. Phys. 139, 124501 (2013)

    CAS  Google Scholar 

  42. R. Jia, C.G. Shao, L. Su, D.H. Huang, X.R. Liu, S.M. Hong, J. Phys. D 40, 3763–3766 (2007)

    CAS  Google Scholar 

  43. N. Liu, G. Zhou, A. Yang, X. Yu, F. Shi, J. Sun, J. Zhang, B. Liu, C. Wu, X. Tao, Y. Sun, Y. Cui, S. Chu, PNAS 116, 765–770 (2019)

    CAS  Google Scholar 

  44. L.A.T. Eisenberg, J. Phys. Chem. 71, 2332–3000 (1967)

    CAS  Google Scholar 

  45. G. Kalampounias, K.S. Andrikopoulos, S.N. Yannopoulos, J. Chem. Phys. 119, 7543–7553 (2003)

    CAS  Google Scholar 

  46. K.S. Andrikopoulos, A.G. Kalampounias, S.N. Yannopoulos, Soft Matter 7, 3404–3411 (2011)

    CAS  Google Scholar 

  47. J.C. Wheeler, Phys. Rev. Lett. 53, 174–177 (1984)

    CAS  Google Scholar 

  48. F. Begum, R.H. Sarker, S.L. Simon, J. Phys. Chem. B 117, 3911–3916 (2013)

    CAS  Google Scholar 

  49. K.S. Andrikopoulos, A.G. Kalampounias, S.N. Yannopoulos, Phys. Rev. B 72, 014203 (2005)

    Google Scholar 

  50. J. Dudowicz, K.F. Freed, J.F. Douglas, J. Chem. Phys. 112, 1002–1010 (2000)

    CAS  Google Scholar 

  51. T. Ward, J. Phys. Chem. 72, 4133–5000 (1968)

    CAS  Google Scholar 

  52. T. Ward, M.B. Myers, J. Phys. Chem. 73, 1374–2000 (1969)

    CAS  Google Scholar 

  53. F. Gompf, J. Phys. Chem. Solids 42, 539–544 (1981)

    CAS  Google Scholar 

  54. W.A. Phillips, U. Buchenau, N. Nücker, A.-J. Dianoux, W. Petry, Phys. Rev. Lett. 63, 2381–2384 (1989)

    CAS  Google Scholar 

  55. W.A. Kamitakahara, R.L. Cappelletti, P. Boolchand, B. Halfpap, F. Gompf, D.A. Neumann, H. Mutka, Phys. Rev. B 44, 94–100 (1991)

    CAS  Google Scholar 

  56. T. Scopigno, R. Di Leonardo, G. Ruocco, A. Baron, S. Tsutsui, F. Bossard, S.N. Yannopoulos, Phys. Rev. Lett. 92, 025503 (2004)

    CAS  Google Scholar 

  57. Y. Yang, D.E. Sayers, M.A. Paesler, J. Non-Cryst. Solids 114, 67–69 (1989)

    CAS  Google Scholar 

  58. S. de Panfilis, A. Filipponi, Europhys. Lett. 37, 397–402 (1997)

    Google Scholar 

  59. R. Kaplow, T.A. Rowe, B.L. Averbach, Phys. Rev. 168, 1068–1070 (1968)

    CAS  Google Scholar 

  60. P. Andonov, J. Non-Cryst. Solids 47, 297–339 (1982)

    CAS  Google Scholar 

  61. R.B. Stephens, J. Appl. Phys. 49, 5855–5864 (1978)

    CAS  Google Scholar 

  62. R.B. Stephens, Phys. Rev. B 30, 5195–5202 (1984)

    CAS  Google Scholar 

  63. I. Echeverria, P.L. Kolek, D.J. Plazek, L. Simon, J. Non-Cryst. Solids 324, 242–255 (2003)

    CAS  Google Scholar 

  64. N.J. Shevchik, Phys. Rev. Lett. 33, 1572–1576 (1974)

    CAS  Google Scholar 

  65. W.W. Warren, R. Dupree, Phys. Rev. B 22, 2257–2275 (1980)

    CAS  Google Scholar 

  66. P. Jóvári, L. Pusztai, Phys. Rev. B 64, 014205 (2001)

    Google Scholar 

  67. P. Jóvári, R.G. Delaplane, L. Pusztai, Phys. Rev. B 67, 172201 (2003)

    Google Scholar 

  68. D. Caprion, H.R. Schober, Phys. Rev. B 62, 3709 (2000)

    CAS  Google Scholar 

  69. D. Hohl, R. Jones, Phys. Rev. B 43, 3856–3870 (1991)

    CAS  Google Scholar 

  70. C. Oligschleger, R.O. Jones, S.M. Reimann, H.R. Schober, Phys. Rev. B 53, 6165–6173 (1996)

    CAS  Google Scholar 

  71. F. Kirchhoff, G. Kresse, M.J. Gillan, Phys. Rev. B 57, 10482–10495 (1998)

    CAS  Google Scholar 

  72. X. Zhang, D.A. Drabold, Phys. Rev. Lett. 83, 5042–5045 (1999)

    CAS  Google Scholar 

  73. K. Nakamura, A. Ikawa, Phys. Rev. B 67, 104203 (2003)

    Google Scholar 

  74. G. Lucovsky, A. Mooradian, W. Taylor, G.B. Wright, R.C. Keezer, Solid State Commun. 5, 113–117 (1967)

    CAS  Google Scholar 

  75. J. Schottmiller, M. Tabak, G. Lucovsky, A.T. Ward, J. Non-Cryst. Solids 4, 80–96 (1970)

    CAS  Google Scholar 

  76. M. Gorman, S.A. Solin, Solid State Commun. 18, 1401–1404 (1976)

    CAS  Google Scholar 

  77. Lucovsky, in The Physics of Selenium and Tellurium, ed.by E. Gerlach, P. Grosse (Springer, Berlin, 1979), p. 178.

  78. G. Carini, M. Cutroni, G. Galli, P. Migliardo, F. Wanderlingh, Solid State Commun. 33, 1139–1141 (1980)

    CAS  Google Scholar 

  79. P.J. Carroll, J.S. Lannin, Solid State Commun. 40, 81–84 (1981)

    CAS  Google Scholar 

  80. S.N. Yannopoulos, K.S. Andrikopoulos, Phys. Rev. B 69, 144206 (2004)

    Google Scholar 

  81. S.N. Yannopoulos, K.S. Andrikopoulos, J. Chem. Phys. 121, 4747–4758 (2004)

    CAS  Google Scholar 

  82. S. Dash, P. Chen, P. Boolchand, J. Chem. Phys. 146, 224506 (2017)

    CAS  Google Scholar 

  83. R.M. Martin, G. Lucovsky, K. Helliwell, Phys. Rev. B 13, 1383–1395 (1976)

    CAS  Google Scholar 

  84. M. Misawa, K. Suzuki, J. Phys. Soc. Jpn. 44, 1612–1618 (1978)

    CAS  Google Scholar 

  85. G. Carini, M. Cutroni, M.Y. Fontana, G. Gall, P. Migliardo, Solid State Commun. 33, 1143–1145 (1980)

    CAS  Google Scholar 

  86. E. Griffiths, Solid State Commun. 43, 253–255 (1982)

    CAS  Google Scholar 

  87. V.V. Poborchii, A.V. Kolobov, J. Caro, V.V. Zhuravlev, K. Tanaka, Chem. Phys. Lett. 280, 17–23 (1997)

    CAS  Google Scholar 

  88. S. Pal, S. Gohil, H.K. Sengupta, S.M. Poswal, S. Sharma, P.A. Ghosh, J. Phys. Condens. Matter 27, 415404 (2015)

    Google Scholar 

  89. G. Briegleb, Phys. Chem. A 144, 321–339 (1929)

    CAS  Google Scholar 

  90. A.I. Popov, J. Phys. C 9, L675–L677 (1976)

    CAS  Google Scholar 

  91. T. Scopigno, W. Steurer, S.N. Yannopoulos, A. Chrissanthopoulos, M. Krisch, G. Ruocco, T. Wagner, Nat. Commun. 2, 195 (2011)

    CAS  Google Scholar 

  92. S. Cazzato, T. Scopigno, S.N. Yannopoulos, G. Ruocco, J. Non-Cryst. Solids 355, 1797–1800 (2009)

    CAS  Google Scholar 

  93. V.N. Bogomolov, E.L. Lutsenko, V.P. Petranovskii, S.V. Kholodkevich, JETP Lett. 23, 482–484 (1976)

    Google Scholar 

  94. O. Terasaki, K. Yamazaki, J.M. Thomas, T. Ohsuna, D. Watanabe, J.V. Sanders, J.C. Barry, Nature 330, 58–60 (1987)

    CAS  Google Scholar 

  95. V.V. Poborchii, A.V. Kolobov, J. Caro, V.V. Zhuravlev, K. Tanaka, Phys. Rev. Lett. 82, 1955 (1999)

    CAS  Google Scholar 

  96. C. Luo, Y. Xu, Y. Zhu, Y. Liu, S. Zheng, Y. Liu, A. Langrock, C. Wang, ACS Nano 7, 8003–8010 (2013)

    CAS  Google Scholar 

  97. Z. Li, L. Yuan, Z. Yi, Y. Liu, Y. Huang, Nano Energy 9, 229–236 (2014)

    CAS  Google Scholar 

  98. X. Zhou, P. Gao, S. Sun, D. Bao, Y. Wang, X. Li, T. Wu, Y. Chen, P. Yang, Chem. Mater. 27, 6730–6736 (2015)

    CAS  Google Scholar 

  99. T. Vasileiadis, V. Dracopoulos, M. Kollia, S.N. Yannopoulos, Sci. Rep. 3, 1209 (2013)

    Google Scholar 

  100. T. Vasileiadis, S.N. Yannopoulos, J. Appl. Phys. 116, 103510 (2014)

    Google Scholar 

  101. J. Sarrach, J.P. Deneufville, W.L. Haworth, J. Non-Cryst. Solids 22, 245–267 (1976)

    CAS  Google Scholar 

  102. A. Koma, O. Mizuno, S. Tanaka, Phys. Status Solidi B 46, 225–233 (1971)

    CAS  Google Scholar 

  103. M.D. Ruiz-Martin, M. Jimenez-Ruiz, F.J. Bermejo, R. Fernandez-Perea, Phys. Rev. B 73, 094201 (2006)

    Google Scholar 

  104. Y.-H. Cheng, S.W. Teitelbaum, F.Y. Gao, K.A. Nelson, Phys. Rev. B 98, 134112 (2018)

    CAS  Google Scholar 

  105. J. Stuke, Non-Cryst. Solids 4, 1–26 (1970)

    CAS  Google Scholar 

  106. J. Feinleib, S. Ovshinsky, J. Non-Cryst. Solids 4, 564–572 (1970)

    CAS  Google Scholar 

  107. T. Ichikawa, Phys. Status Solidi B 56, 707–715 (1973)

    CAS  Google Scholar 

  108. H. Ikemoto, T. Miyanaga, J. Synchrotron Rad. 21, 409–412 (2014)

    CAS  Google Scholar 

  109. B. Kramer, K. Maschke, L.D. Laude, Phys. Rev. B 8, 5781–5793 (1973)

    CAS  Google Scholar 

  110. T. Ichikawa, Jpn. J. Appl. Phys. 13(2), 785–787 (1974)

    Google Scholar 

  111. R.A. Powell, W.E. Spicer, Phys. Rev. B 10, 1603–1616 (1974)

    CAS  Google Scholar 

  112. N.A. Blum, C. Feldman, Solid State Commun. 15, 965–968 (1974)

    CAS  Google Scholar 

  113. M. Long, P. Galison, R. Allen, Phys. Rev. B 13, 1821–1829 (1976)

    CAS  Google Scholar 

  114. J. Akola, R.O. Jones, Phys. Rev. B 85, 134103 (2012)

    Google Scholar 

  115. H. Brodsky, R.J. Gambino, J.E. Smith Jr., Y. Yacoby, Phys. Status Solidi B 52, 609–614 (1972)

    CAS  Google Scholar 

  116. G. Lucovsky, Phys. Status Solidi B 49, 633–641 (1972)

    CAS  Google Scholar 

  117. Y. Tsuchiya, J. Phys. 3, 3163–3172 (1991)

    CAS  Google Scholar 

  118. J. Cabane, J. de Friedel, Physique 32, 73–84 (1971)

    CAS  Google Scholar 

  119. J.E. Enderby, M. Gay, J. Non-Cryst. Solids 35–36, 1269–1275 (1980)

    Google Scholar 

  120. J. Akola, R.O. Jones, S. Kohara, T. Usuki, E. Bychkov, Phys. Rev. B 81, 094202 (2010)

    Google Scholar 

  121. Yashiro, Y. Nishina, in The Physics of Selenium and Tellurium, ed. by E. Gerlach, P. Grosse (Springer, Berlin, 1979), p. 206.

  122. J.R. Magana, J.S. Lannin, Phys. Rev. Lett. 51, 2398–2401 (1983)

    CAS  Google Scholar 

  123. H. Endo, T. Tsuzuki, M. Yao, Y. Kawakita, K. Shibata, T. Kamiyama, M. Misawa, K. Suzuki, J. Phys. Soc. Jpn. 63, 3200–3203 (1994)

    CAS  Google Scholar 

  124. T. Vasileiadis, V. Dracopoulos, M. Kollia, L. Syggelou, S.N. Yannopoulos, J. Nanopart. Res. 21, 218 (2019)

    Google Scholar 

  125. H. Ikemoto, T. Miyanaga, Phys. Rev. Lett. 99, 165503 (2007)

    Google Scholar 

  126. H. Ikemoto, A. Goyo, T. Miyanaga, J. Phys. Chem. C 115, 2931–2937 (2011)

    CAS  Google Scholar 

  127. H.H. Eysel, S. Sunder, Inorg. Chem. 18, 2626–2627 (1979)

    CAS  Google Scholar 

  128. R.S. Laitinen, P. Pekonen, R.J. Suontamo, Coord. Chem. Rev. 130, 1–62 (1994)

    CAS  Google Scholar 

  129. T. Chivers, R. Laitinen, K. Schmidt, Can. J. Chem. 70, 719–725 (1992)

    CAS  Google Scholar 

  130. B. Yuan, W. Zhu, I. Hung, Z. Gan, B. Aitken, S. Sen, J. Phys. Chem. B 122, 12219–12226 (2018)

    CAS  Google Scholar 

  131. P.A. Vermeulen, J.A. Momand, B.J. Kooi, J. Chem. Phys. 141, 0245022014 (2014)

    Google Scholar 

  132. R. Geick, E.F. Steigmeier, H. Auderset, Phys. Status Solidi B. 54, 623–690 (1972)

    CAS  Google Scholar 

  133. T. Ward, J. Phys. Chem. 74, 4110–4115 (1970)

    CAS  Google Scholar 

  134. J.R. Magana, J.S. Lannin, Phys. Rev. B. 29, 5663–5666 (1984)

    CAS  Google Scholar 

  135. A. Tverjanovich, D. Cuisset, E.B. Fontanari, J. Am. Ceram. Soc. 101, 5188–5197 (2018)

    CAS  Google Scholar 

  136. R. Zallen, Phys. Rev. B 9, 4485–4496 (1974)

    CAS  Google Scholar 

  137. B. Eckert, R. Schumacher, H.J. Jodl, P. Foggi, High Press. Res. 17, 113–146 (2000)

    Google Scholar 

  138. M.J. Peanasky, C.W. Jurgensen, H.G. Drickamer, J. Chem. Phys. 81, 6407–6408 (1984)

    Google Scholar 

  139. A. Anderson, W. Smith, J.F. Wheeldon, Chem. Phys. Lett. 263, 133–137 (1996)

    CAS  Google Scholar 

  140. L. Ross, Spectrochim. Acta 49A, 681–684 (1993)

    CAS  Google Scholar 

  141. K.S. Andrikopoulos, F.A. Gorelli, M. Santoro, S.N. Yannopoulos, High Press. Res. 33, 134–140 (2013)

    CAS  Google Scholar 

  142. L. Crapanzano, W.A. Crichton, G. Monaco, R. Bellissent, M. Mezouar, Nat. Mater. 4, 550–552 (2005)

    CAS  Google Scholar 

  143. W. Richter, J.B. Renucci, M. Cardona, Phys. Status Solidi B 56, 223–229 (1973)

    CAS  Google Scholar 

  144. K. Bandyopadhyay, L.C. Ming, Phys. Rev. B 54, 12049–12056 (1996)

    CAS  Google Scholar 

  145. K. Yang, Q. Cui, Y. Hou, B. Liu, Q. Zhou, J. Hu, H. Mao, G. Zou, J. Phys. Cond. Matter 19, 425220 (2007)

    Google Scholar 

  146. Z. He, Z.G. Wang, H.Y. Zhu, X.R. Liu, J.P. Peng, S.M. Hong, Appl. Phys. Lett. 105, 011901 (2014)

    Google Scholar 

  147. S.R. Elliott, J. Phys. 42, C4–387 (1981)

    Google Scholar 

  148. Y. Sakaguchi, K. Tamura, J. Phys. Cond. Matter 7, 4787–4801 (1995)

    CAS  Google Scholar 

  149. Y. Sakaguchi, K. Tamura, Eur. Phys. J. E 22, 315–324 (2007)

    CAS  Google Scholar 

  150. S. Munejiri, F. Shimojo, K. Hoshino, J. Phys. Cond. Matter 12, 7999–8008 (2000)

    CAS  Google Scholar 

  151. S. N. Yannopoulos, Chapter 12 - Athermal photoelectronic effects in noncrystalline chalcogenides: Current status and beyond, in World Scientific Reference of Amorphous Materials: The Structure, Properties, Modeling and Main Applications, Volume 1: Amorphous Chalcogenides: Structure, Properties, Modeling and Applications, ed. By A. V. Kolobov, K. Shimakawa, (World Scientific, 2020), in press. (for a preprint see arXiv:abs/2001.04877v1).

  152. J. Dresner, G.B. Stringfellow, J. Phys. Chem. Solids 29, 303–311 (1968)

    CAS  Google Scholar 

  153. V. Lyubin, M. Klebanov, M. Mitkova, Appl. Surf. Sci. 154–155, 135–139 (2000)

    Google Scholar 

  154. V.V. Poborchii, A.V. Kolobov, K. Tanaka, Appl. Phys. Lett. 72, 1167–1169 (1998)

    CAS  Google Scholar 

  155. A.V. Roy, K.T. Kolobov, J. Appl. Phys. 83, 4951–4956 (1998)

    CAS  Google Scholar 

  156. R.E. Tallman, B.A. Weinstein, A. Reznik, M. Kubota, K. Tanioka, J.A. Rowlands, J. Non-Cryst. Solids 354, 4577–4581 (2008)

    CAS  Google Scholar 

  157. V. Poborchii, A. Kolobov, K. Tanaka, Appl. Phys. Lett. 74, 215–217 (1999)

    CAS  Google Scholar 

Download references

Acknowledgements

I want to thank a number of colleagues whose collaboration over the past several years has been instrumental in conducting systematic research on elemental chalcogens. Therefore, I wish to acknowledge collaboration to Dr. K. S. Andrikopoulos, Dr. D. Th. Kastrissios, Dr. A. Kalampounias, Prof. A. Chrissanthopoulos, and Prof. G. N. Papatheodorou. Finally, I want to thank Ms. M. Perivolari for managing the copyrighted material presented herein. This work was supported by the project "National Infrastructure in Nanotechnology, Advanced Materials and Micro-/ Nanoelectronics" (MIS 5002772) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Program "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros N. Yannopoulos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yannopoulos, S.N. Structure and photo-induced effects in elemental chalcogens: a review on Raman scattering. J Mater Sci: Mater Electron 31, 7565–7595 (2020). https://doi.org/10.1007/s10854-020-03310-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03310-0

Navigation