Skip to main content
Log in

Temperature-dependent Raman scattering and photoluminescence in YBa2Cu3O7 doped with SiO2 and Zn0.95Mn0.05O nanoparticles: comparative study

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A combined study examining the temperature dependencies of Raman scattering and photoluminescence (PL) of a YBa2Cu3O7 (YBCO) matrix doped with SiO2 (12 nm; 0.01 wt%, 0.10 wt%) and Zn0.95Mn0.05O (20 nm; 0.02 wt%, 0.10 wt%) nanoparticles was presented. X-ray diffraction (XRD) analysis confirms that both YBCO types exhibit a perovskite structure with the orthorhombic Pmmm phase. The microstructure was examined using environmental scanning electron microscopy (ESEM). Raman scattering and photoluminescence measurements as functions of temperature were conducted in the 77–837 K range. The photoluminescence intensity is observed to decrease for the doped YBCO than for the pure YBCO, because of localized defects. The photoluminescence spectrum is primarily composed of three bands at 1.60, 1.88, and 2.40 eV. A clearly pronounced correlation is observed between electronic and structural changes in the doped YBCO, which is due to the temperature, illumination, added oxygen or metal ions, and spectral parameters. The PL integrated intensity as a function of the inverse temperature was simulated using the Arrhenius model. This analysis reveals that the energy exchange between the different levels in the pure and doped YBCO was conducted via two vibration modes only, which are strongly linked to the oxygen and copper atoms in the YBCO matrix. The temperature dependencies of the modes at 340 and 500 cm−1 exhibit softening with temperature increase, resulting from microstructure control, which may be due to small concentrations of Si, Zn, and Mn substitutions at the chain Cu(1) and plane Cu(2) sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Magnuson M, Schmitt T, Strocov VN, Schlappa J, Kalabukhov AS, Duda LC. Self-doping processes between planes and chains in the metal-to-superconductor transition of YBa2Cu3O6.9. Sci Rep. 2014;4:7010.

    Google Scholar 

  2. Lu TP, Ma ZG, Du CH, Fang YT, Wu HY, Jiang Y, Wang L, Dai LG, Jia HQ, Liu WM, Chen H. Temperature-dependent photoluminescence in light-emitting diodes. Sci Rep. 2014;4:6131.

    Article  CAS  Google Scholar 

  3. Huhtinen H, Irjala M, Paturi P. Magnetic field dependent photoinduced superconductivity and its oxygen-deficient dependency in undoped and BZO-doped YBCO thin films. Phys Proc. 2012;36:503.

    Article  CAS  Google Scholar 

  4. Chakhalian J, Freeland J, Habermeier H, Cristiani G, Khaliullin G, Veenendaal M, Keimer B. Orbital reconstruction and covalent bonding at an oxide interface. Science. 2007;318(5853):1114.

    Article  CAS  Google Scholar 

  5. Kawamoto K, Hirabayashi I. Reversible photostructural change in oxygen-deficient YBa2Cu3Oy. Phys Rev B Condens Matter. 1994;49(5):3655.

    Article  CAS  Google Scholar 

  6. Watanabe N, Koshizuka N. Temperature dependence of the phonon frequencies and linewidths of YBa2(Cu1−x M x)4O8 for M∇Ni and Zn. Phys Rev B. 1998;87(10):1474.

    Google Scholar 

  7. Gaji R, Devil SD, Konstantinovi MJ, Popovi ZV. Superconductivity induced phonon anomalies in the Raman spectra of Zn and Ni doped YBa2Cu3O7. Z Phys. 1994;94(3):261.

    Article  Google Scholar 

  8. Ben Salem M, Hannachi E, Slimani Y, Hamrita A, Zouaoui M, Bessaisb L, Ben Salem M, Ben Azzouz F. SiO2 nanoparticles addition effect on microstructure and pinning properties in YBa2Cu3Oy ceramics. Ceram Int. 2014;40(3):4953.

    Article  CAS  Google Scholar 

  9. Bouchoucha I, Ben Azzouz F, Annabi M, Zouaoui M, B Salemen M. The study on the ZnO and Zn0.95Mn0.05O doped YBCO system: investigation of microstructure and transport properties. Phys C. 2010;470(4):262.

    Article  CAS  Google Scholar 

  10. Ithurria S, Tessier M, Mahler B, Lobo R, Dubertret B, Efros A. Colloidal nanoplatelets with two-dimensional electronic structure. Nat Mater. 2011;10(12):936.

    Article  CAS  Google Scholar 

  11. de Boer W, Timmerman D, Dohnalová K, Yassievich I, Zhang H, Buma W, Gregorkiewicz T. Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nat Nanotechnol. 2010;5(12):878.

    Article  Google Scholar 

  12. Kan D, Terashima T, Kanda R, Masuno A, Tanaka K, Chu S, Kan H, Ishizumi A, Kanemitsu Y, Shimakawa Y, Takano M. Blue-light emission at room temperature from Ar+-irradiated SrTiO3. Nat Mater. 2005;4(11):816.

    Article  CAS  Google Scholar 

  13. Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev O, Tendeloo G, Moshchalkov V. Classification and control of the origin of photoluminescence from Si nanocrystals. Nat Nanotechnol. 2008;3(3):174.

    Article  CAS  Google Scholar 

  14. Ryu S, Park J, Oh J, Long D, Kwon K, Kim Y, Lee J, Kim J. Analysis of improved efficiency of InGaN light-emitting diode with bottom photonic crystal fabricated by anodized aluminium oxide. Adv Funct Mater. 2009;19(10):1650.

    Article  CAS  Google Scholar 

  15. Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater. 2004;3(9):601.

    Article  CAS  Google Scholar 

  16. Szendrei K, Speirs M, Gomulya W, Jarzab D, Manca M, Mikhnenko O, Yarema M, Kooi B, Heiss W, Loi M. Exploring the origin of the temperature-dependent behavior of PbS nanocrystal thin films and solar cells. Adv Func Mater. 2012;22(8):1598.

    Article  CAS  Google Scholar 

  17. Al Almessiere M, Al-Otaibi A, Ben Azzouz F. Superconducting properties of nano-sized SiO2 doped YBCO thick film on Ag substrate. Indian J Phys. 2017;91(10):1149.

    Article  Google Scholar 

  18. Naito T, Haraguchi S, Suzuki T, Iwasaki H, Sasaki T, Nishizaki T, Shibata K, Kobayashi N. In-plane anisotropy of the resistivity in 60 K YBCO single crystal under magnetic field. Phys C. 2001;362(1):310.

    Article  CAS  Google Scholar 

  19. Puica I, Lang W, Durrell J. High velocity vortex channelling in vicinal YBCO thin films. Phys C. 2012;479(17):88.

    Article  CAS  Google Scholar 

  20. Ben Salem M, Almessiere M, Al-Otaibi A, Ben Salem M, Ben Azzouz F. Effect of SiO2 nano-particles and nano-wires on microstructure and pinning properties of YBa2Cu3O7-d. J Alloys Compd. 2016;657(3):286.

    Article  CAS  Google Scholar 

  21. Saint-Girons G, Sagnes I. Photoluminescence quenching of a low-pressure metal-organic vapor-phase-epitaxy grown quantum dots array with bimodal inhomogeneous broadening. J Appl Phys. 2002;91(12):10115.

    Article  CAS  Google Scholar 

  22. Rihani J, Sallet V, Yahyaoui N, Harmand J, Oueslati M, Chtourou R. Interdot carrier’s transfer via tunneling pathway studied from photoluminescence spectroscopy. J Lumin. 2009;129(3):251.

    Article  CAS  Google Scholar 

  23. Khalifa N, Kaouach H, Zaghdoudi W, Daoudi M, Chtourou R. Photoluminescence investigations and thermal activation energy evaluation of Fe3+-doped PVA films. Appl Phys A. 2015;120(4):1469.

    Article  CAS  Google Scholar 

  24. Eremenko V, Sukhareva T, Samovarov V. Luminescence spectra and crystal structure of high-temperature superconductors. Phys Solid State. 1997;39(10):1548.

    Article  Google Scholar 

  25. Bakr M, Schnyder A, Klam L, Manske D, Lin C, Keimer B, Cardona M, Ulrich C. Electronic and phononic Raman scattering in detwinned YBa2Cu3O6.95 and Y0.85Ca0.15Ba2Cu3O6.95: s-wave admixture to the dx 2 − y 2-wave order parameter. Phys Rev B. 2009;80(6):1956.

    Article  Google Scholar 

  26. Hong S, Cheong H, Park G. Raman analysis of a YBa2Cu3O7-δ thin film with oxygen depletion. Phys C. 2010;470(7):383.

    Article  CAS  Google Scholar 

  27. Elsabawy KM. Raman spectra, microstructure and superconducting properties of Sb(III)–YBCO composite superconductor. Phys C. 2005;432(3–4):263.

    Article  CAS  Google Scholar 

  28. Limonov MF, Rykov AI, Tajima S, Yamanaka A. Raman scattering in YBa2Cu3O7 single crystals: anisotropy in normal and superconductivity states. Phys Solid State. 1998;40(3):367.

    Article  Google Scholar 

  29. Balkanski M, Wallis RF, Haro Hauff E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys Rev B. 1983;28(28):1928.

    Article  CAS  Google Scholar 

  30. Reznik D. Phonon anomalies and dynamic stripes. Phys C. 2012;481:75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munirah A. Al Messiere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Messiere, M.A. Temperature-dependent Raman scattering and photoluminescence in YBa2Cu3O7 doped with SiO2 and Zn0.95Mn0.05O nanoparticles: comparative study. Rare Met. 38, 754–763 (2019). https://doi.org/10.1007/s12598-018-1052-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1052-8

Keywords

Navigation