Skip to main content
Log in

Structural and magnetic properties of Ni-substituted Ba0.5Sr1.5-based Y-type hexaferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Ni-doped Y-type hexaferrites Ba0.5Sr1.5Zn2−xNixFe12O22 have been prepared using the solid-state technique. The X-ray diffraction patterns indicate that the lattice constant is increased as the Ni content raises, which can be ascribed to the different ionic radius of Zn2+ and Ni2+. All samples are polycrystalline with clear grain interface by means of scanning electron microscopy. The grain size is found to increase with an increase of Ni concentration. The magnetic properties of all samples show different Ni-substitution dependence and strongly depend on Ni content. The results indicate that the value of saturation magnetization increases to a maximum of 41.5 emu/g at x = 0.8, and then decreases with increasing Ni content. For low-doped Ni-substitution (x ≤ 0.8) specimens, the magnetic transition temperature associated with a screw to ferrimagnetic state increases, suggesting that magnetically induced ferroelectric polarization will be observed at high temperature even room temperature. Especially for x = 1.2 specimen, the stabilization of the ferroelectricity phase at a low magnetic field is expected in terms of the disappearance of phase boundary from the screw to intermediate-I. At the same time, the ferroelectric polarization can be maintained in a wide range of magnetic fields for Ni-doped samples. These results confirm that Ba0.5Sr1.5-based Y-type hexaferrite with different Ni-doped content have a great application prospect in magnetoelectric devices at high temperature and under low magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    Article  CAS  Google Scholar 

  2. P. Hernández-Gómez, D. Martín-González, C. Torres, J.M. Muñoz, J. Magn. Magn. Mater. 476, 478–482 (2019)

    Article  Google Scholar 

  3. K. Zhai, Y. Chai, J. Cong, D. Shang, Y. Sun, Phys. Rev. B 98, 144405 (2018)

    Article  CAS  Google Scholar 

  4. S. Shen, Y. Chai, Y. Sun, Sci. Rep. 5, 8254 (2015)

    Article  CAS  Google Scholar 

  5. K. Zhai, Y. Wu, S.P. Shen, W. Tian, H.B. Cao, Y.S. Chai, B.C. Chakoumakos, D.S. Shang, L.Q. Yan, F.W. Wang, Y. Sun, Nat. Commun. 8, 519 (2017)

    Article  Google Scholar 

  6. S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, Y. Tokura, Science 319, 1643–1646 (2008)

    Article  CAS  Google Scholar 

  7. V. Kocsis, T. Nakajima, M. Matsuda, A. Kikkawa, Y. Kaneko, J. Takashima, K. Kakurai, T. Arima, F. Kagawa, Y. Tokunaga, Y. Tokura, Y. Taguchi, Nat. Commun. 10, 1247 (2019)

    Article  CAS  Google Scholar 

  8. R.C. Pullar, Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  CAS  Google Scholar 

  9. Y.T. Yang, L.Y. Wang, L.J. Shen, W.P. Zhou, Y.Q. Song, L.Y. Lv, D.H. Wang, Q.Q. Cao, Y.W. Du, Y.J. Zhang, J.H. Yang, Solid State Commun. 178, 54–58 (2014)

    Article  CAS  Google Scholar 

  10. Y.S. Chai, S. Kwon, S.H. Chun, I. Kim, B.G. Jeon, K.H. Kim, S. Lee, Nat. Commun. 5, 4208 (2014)

    Article  CAS  Google Scholar 

  11. S.P. Shen, L.Q. Yan, Y.S. Chai, J.Z. Cong, Y. Sun, Appl. Phys. Lett. 104, 032905 (2014)

    Article  Google Scholar 

  12. Y.S. Chai, S.H. Chun, S.Y. Haam, Y.S. Oh, I. Kim, K. Hoon Kim, New J. Phys. 11, 073030 (2009)

    Article  Google Scholar 

  13. L.Y. Wang, D.H. Wang, Q.Q. Cao, Y.X. Zheng, H.C. Xuan, J.L. Gao, Y.W. Du, Sci. Rep. 2, 223 (2012)

    Article  Google Scholar 

  14. N. Momozawa, Y. Yamaguchi, H. Takei, M. Mita, J. Phys. Soc. Jpn. 54, 771–780 (1985)

    Article  CAS  Google Scholar 

  15. P. Novák, K. Knížek, J. Rusz, Phys. Rev. B 76, 024432 (2007)

    Article  Google Scholar 

  16. S. Utsumi, D. Yoshiba, N. Momozawa, J. Phys. Soc. Jpn. 76, 034704 (2007)

    Article  Google Scholar 

  17. T. Kimura, G. Lawes, A.P. Ramirez, Phy. Rev. Lett. 94, 137201 (2005)

    Article  CAS  Google Scholar 

  18. H. Khanduri, M. Chandra Dimri, H. Kooskora, I. Heinmaa, G. Viola, H. Ning, M.J. Reece, J. Krustok, R. Stern, J. Appl. Phys. 112, 073903 (2012)

    Article  Google Scholar 

  19. Y. Hiraoka, H. Nakamura, M. Soda, Y. Wakabayashi, T. Kimura, J. Appl. Phys. 110, 033920 (2011)

    Article  Google Scholar 

  20. G.H. Wang, S.X. Cao, Y.M. Cao, S.B. Hu, X.Y. Wang, Z.J. Feng, B.J. Kang, Y.S. Chai, J.C. Zhang, W. Ren, J. Appl. Phys. 118, 094102 (2015)

    Article  Google Scholar 

  21. Y.Q. Wang, S.L. Zhang, W.K. Zhu, L.S. Ling, L. Zhang, Z. Qu, L. Pi, W. Tong, M.L. Tian, J. Mater. Chem. C 7, 340–345 (2019)

    Article  CAS  Google Scholar 

  22. I. Ali, M.U. Islam, I. Sadiq, N. Karamat, A. Iftikhar, M.A. Khan, A. Shah, M. Athar, I. Shakir, M.N. Ashiq, J. Magn. Magn. Mater. 385, 386–393 (2015)

    Article  CAS  Google Scholar 

  23. W.F. Xu, J. Yang, W. Bai, Y.Y. Zhang, K. Tang, C.-G. Duan, X.D. Tang, J.H. Chu, J. Appl. Phys. 117, 17D909 (2015)

    Article  Google Scholar 

  24. P. Behera, S. Ravi, Solid State Sci. 89, 139–149 (2019)

    Article  CAS  Google Scholar 

  25. T. Kimura, Annu. Rev. Mater. Res. 37, 387–413 (2007)

    Article  CAS  Google Scholar 

  26. M.H. Won, C.S. Kim, J. Appl. Phys. 115, 17A509 (2014)

    Article  Google Scholar 

  27. S. Ishiwata, Y. Taguchi, Y. Tokunaga, H. Murakawa, Y. Onose, Y. Tokura, Phys. Rev. B 79, 180408(R) (2009)

    Article  Google Scholar 

  28. Y. Chang, K. Zhai, Y. Chai, D. Shang, Y. Sun, J. Phys. D: Appl. Phys. 51, 264002 (2018)

    Article  Google Scholar 

  29. T. Nakajima, Y. Tokunaga, M. Matsuda, S. Dissanayake, J. Fernandez-Baca, K. Kakurai, Y. Taguchi, Y. Tokura, T.-H. Arima, Phys. Rev. B 94, 195154 (2016)

    Article  Google Scholar 

  30. S.H. Chun, Y.S. Chai, Y.S. Oh, D. Jaiswal-Nagar, S.Y. Haam, I. Kim, B. Lee, D.H. Nam, K.T. Ko, J.H. Park, J.H. Chung, K.H. Kim, Phys. Rev. Lett. 104, 037204 (2010)

    Article  Google Scholar 

  31. F. Wang, T. Zou, L.Q. Yan, Y. Liu, Y. Sun, Appl. Phys. Lett. 100, 122901 (2012)

    Article  Google Scholar 

  32. K. Kníek, P. Novák, M. Küpferling, Phys. Rev. B 73, 153103 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Foundation of Educational Commission of Anhui Province (KJ2018A0393 and KJ2018A0394) and Anhui Provincial Natural Science Foundation (1908085QA36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, H., Pan, L. et al. Structural and magnetic properties of Ni-substituted Ba0.5Sr1.5-based Y-type hexaferrite. J Mater Sci: Mater Electron 31, 7642–7648 (2020). https://doi.org/10.1007/s10854-020-03300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03300-2

Keywords

Navigation