Skip to main content
Log in

Microstructure and Mechanical Properties of Tin-Bismuth Solder Reinforced by Aluminum Borate Whiskers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tin-bismuth solder has emerged as a promising lead-free alternative to tin-lead solder, especially for low-temperature packaging applications. However, the intrinsic brittleness of tin-bismuth solder alloy, aggravated by the coarse bismuth-rich phase and the thick interfacial intermetallic layer, notably limits the mechanical performance of the bonded joints. In this work, the microstructure and mechanical performance of solder joints were improved by adding 3.2 vol.% aluminum borate whiskers to the tin-bismuth solder alloy. This whisker-reinforced composite solder was fabricated through a simple process. Typically, 25-μm to 75-μm tin-bismuth particles were mixed with a small amount of aluminum borate whiskers with diameter of 0.5 μm to 1.5 μm and length of 5 μm to 15 μm. The addition of whiskers restrained the formation of coarse brittle bismuth-rich phase and decreased the lamellar spacing from 0.84 μm to 7.94 μm to the range of 0.22 μm to 1.80 μm. Moreover, the growth rate of the interfacial intermetallic layer during the remelting treatment decreased as well. The joint shear strength increased from 19.4 MPa to 24.7 MPa, and only declined by 4.9% (average, −5.9% to 15.8%) after the tenth remelting, while the shear strength of the joint without whiskers declined by 31.5% (average, 10.1–44.1%). The solder alloy was reinforced because of their high strength and high modulus and also the refinement effect on the solder alloy microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000).

    Article  Google Scholar 

  2. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, Mater. Sci. Eng. R 44, 1 (2004).

    Article  Google Scholar 

  3. B. Zaccariba, Weld. Int. 15, 545 (2001).

    Article  Google Scholar 

  4. J. Shen and Y.C. Chan, Microelectron. Reliab. 49, 223 (2009).

    Article  Google Scholar 

  5. H.Y. Lee and J.G. Duh, J. Electron. Mater. 35, 494 (2006).

    Article  Google Scholar 

  6. X. Lv, T. Lin, J. Wang, J. An, and P. He, Mater. Trans. 54, 1228 (2013).

    Article  Google Scholar 

  7. L. Gao, J. Wang, T. Lin, P. He, and F. Lu, 14th International Conference on Electronic Packaging Technology (ICEPT), (2013), p. 193.

  8. Y. Zhou, N. Zhao, C. Shi, E. Liu, X. Du, and C. He, Mater. Sci. Eng. A 598, 114 (2014).

    Article  Google Scholar 

  9. J. Hu, X.F. Wang, and Z.Z. Zheng, J. Appl. Phys. 107, 023513 (2010).

    Article  Google Scholar 

  10. S.C. Tjong and Y.W. Mai, Compos. Sci. Technol. 68, 583 (2008).

    Article  Google Scholar 

  11. J. Yin, D. Yao, H. Hu, Y. Xia, K. Zuo, and Y.P. Zeng, Mater. Sci. Eng. A 607, 287 (2014).

    Article  Google Scholar 

  12. M. Sobhani, H. Arabi, A. Mirhabibi, R.M.D. Brydson, and T. Nonferr, Metal. Soc. 23, 2994 (2013).

    Google Scholar 

  13. H.Q. Gao, L.D. Wang, and W.D. Fei, Mater. Sci. Eng. A 479, 261 (2008).

    Article  Google Scholar 

  14. T. Lin, M. Yang, P. He, C. Huang, F. Pan, and Y. Huang, Mater. Des. 32, 4553 (2011).

    Article  Google Scholar 

  15. Y.S. Tang, G.Z. Liang, Z.P. Zhang, and J. Han, J. Appl. Polym. Sci. 106, 4131 (2007).

    Article  Google Scholar 

  16. Y.C. Feng, L. Geng, G.H. Fan, and A.B. Li, Mater. Des. 30, 3632 (2009).

    Article  Google Scholar 

  17. G.J. Zhang, J.F. Yang, M. Ando, and T. Ohji, J. Am. Ceram. Soc. 87, 299 (2004).

    Article  Google Scholar 

  18. R.J. McCabe and M.E. Fine, J. Electron. Mater. 31, 1276 (2002).

    Article  Google Scholar 

  19. D. Frear, D. Grivas, and J.W. Morris, J. Electron. Mater. 16, 181 (1987).

    Article  Google Scholar 

  20. J.P. Coughlin, J.J. Williams, and N. Chawla, J. Mater. Sci. 44, 700 (2009).

    Article  Google Scholar 

  21. M. Yang, T. Lin, P. He, and Y. Huang, Mater. Sci. Eng. A 528, 3520 (2011).

    Article  Google Scholar 

  22. M. Murugesan, C. Zandén, X. Luo, L. Ye, V. Jokubavicius, M. Syväjärvi, and J. Liu, J. Mater. Chem. C 2, 7184 (2014).

    Article  Google Scholar 

  23. M.K. Mani, G. Viola, M.J. Reece, J.P. Hall, and S.L. Evans, Mater. Sci. Eng. A 592, 19 (2013).

    Article  Google Scholar 

  24. A.A. El-Daly, G.S. Al-Ganainy, A. Fawzy, and M.J. Younis, Mater. Des. 55, 837 (2014).

    Article  Google Scholar 

  25. X. Wang, Y.C. Liu, C. Wei, H.X. Gao, P. Jiang, and L.M. Yu, J. Alloys Compd. 480, 662 (2009).

    Article  Google Scholar 

  26. V. Tvergaard, Acta Metall. Mater. 38, 185 (1990).

    Article  Google Scholar 

  27. X.N. Zhang, L. Geng, and B. Xu, Mater. Chem. Phys. 101, 242 (2007).

    Article  Google Scholar 

  28. Y. Feng, X. Zhou, Z. Min, and W. Kun, Scripta Mater. 53, 361 (2005).

    Article  Google Scholar 

  29. X. Zhang, L. Xu, S. Du, J. Han, P. Hu, and W. Han, Mater. Lett. 62, 1058 (2008).

    Article  Google Scholar 

  30. K. Suganuma, T. Fujita, N. Suzuki, and K. Niihara, J. Mater. Sci. Lett. 9, 633 (1990).

    Article  Google Scholar 

  31. G. Simon and A.R. Bunsell, J. Mater. Sci. 19, 3649 (1984).

    Article  Google Scholar 

  32. G. Bi, H.W. Wang, Q. Wang, R.J. Wu, and D. Zhang, J. Mater. Sci. Lett. 20, 799 (2001).

    Article  Google Scholar 

  33. L.M. Peng, X.K. Li, H. Li, J.H. Wang, and M. Gong, Ceram. Int. 32, 365 (2006).

    Article  Google Scholar 

  34. B. Cherukuri, R. Srinivasan, S. Tamirisakandala, and D.B. Miracle, Scripta Mater. 60, 496 (2009).

    Article  Google Scholar 

  35. M. Amagai, Microelectron. Reliab. 48, 1 (2008).

    Article  Google Scholar 

  36. B. Liu and H.C. Zeng, Small 1, 566 (2005).

    Article  Google Scholar 

  37. Y. Gu, P. Shen, N.N. Yang, and K.Z. Cao, J. Alloys Compd. 586, 80 (2014).

    Article  Google Scholar 

  38. A. Sharma, S. Bhattacharya, S. Das, and K. Das, Metall. Mater. Trans. A 44, 5587 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC, Grant Nos. 51275135, 51474081, 51475103, and 51321061), and The Funds for Distinguished Young Scientists of Heilongjiang Province. The authors thank Mr. Sigurd R. Pettersen (Department of Structural Engineering, Norwegian University of Science and Technology) and Dr. Chunhui Wu (The Institute of Scientific and Industrial Research, Osaka University) for important advice during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wei, H., He, P. et al. Microstructure and Mechanical Properties of Tin-Bismuth Solder Reinforced by Aluminum Borate Whiskers. J. Electron. Mater. 44, 3872–3879 (2015). https://doi.org/10.1007/s11664-015-3896-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3896-0

Keywords

Navigation