Skip to main content
Log in

Hydrothermally synthesized nano-carrots ZnO with CeO2 heterojunctions and their photocatalytic activity towards different organic pollutants

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In current study, ZnO, CeO2, and a series of ZnO/CeO2 nano-composites with different Zn/Ce molar ratios (2:1, 4:1, 6:1, 8:1 and 10:1) are synthesized using a low-temperature hydrothermal method by varying synthesis processing time. X-ray diffraction pattern confirms the presence of hexagonal wurtzite ZnO and cubic CeO2 in synthesized ZnO/CeO2 nano-composites. The shape and morphology of ZnO/CeO2 nanostructures are uncovered by using field emission scanning electron microscope which shows the dispersion of CeO2 nanoparticles on the surface of ZnO nano-carrots. UV–Visible absorption spectra show a slight red shift in the absorption edge of binary oxides relative to pure oxide. X-ray photoelectron spectroscopy is examined to evident the formation of binary nano-composites and to predict the elemental states present in synthesized materials. All samples are employed for photocatalytic degradation of organic dye; rhodamine B (RhB) and a pesticide; triclopyr (TC) under UV light irradiation. The ZC-8 (Zn/Ce = 8:1) nano-composite possesses the highest photodegradation activity for the removal of RhB and TC among all the synthesized nano-composites. The photocatalytic removal of RhB and TC by varying the synthesis conditions such as time duration, pH, and molar ratio is also demonstrated. Furthermore, the role of active species in degradation process is also studied by performing radical scavenging assay. These photodegradation characteristics of ZnO/CeO2 nanostructures are valuable for environmental purification in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, K. Akhtar, M.M. Abdullah, J. Mater. Sci. Technol. 27, 594 (2011)

    CAS  Google Scholar 

  2. S. Rajendran, M.M. Khan, F. Gracia, J. Qin, V.K. Gupta, S. Arumainathan, Sci. Rep. 6, 1–11 (2016)

    Google Scholar 

  3. A. Mittal, B. Mari, S. Sharma, V. Kumari, S. Maken, K. Kumari, N. Kumar, J. Mater. Sci. Mater. Electron. 30, 3186 (2019)

    CAS  Google Scholar 

  4. V. Kumari, A. Mittal, J. Jindal, S. Yadav, N. Kumar, Front. Mater. Sci. 13, 1 (2019)

    Google Scholar 

  5. S. Hussain, M.S. Javed, S. Asim, A. Shaheen, A.J. Khan, Y. Abbas, N. Ullah, A. Iqbal, M. Wang, G. Qiao, S. Yun, Ceram. Int. 46(5), 6406–6412 (2019)

    Google Scholar 

  6. R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, J. Alloy. Compd. 620, 67 (2015)

    CAS  Google Scholar 

  7. Y. Lara-López, G. García-Rosales, J. Jiménez-Becerril, J. Rare Earths 35, 551 (2017)

    Google Scholar 

  8. A. Mittal, S. Sharma, V. Kumari, S. Yadav, N.S. Chauhan, N. Kumar, J. Mater. Sci. Mater. Electron. 30, 17933 (2019)

    CAS  Google Scholar 

  9. N. Verma, S. Yadav, B. Marí, A. Mittal, J. Jindal, Trans. Indian Ceram. Soc. 77, 1 (2018)

    CAS  Google Scholar 

  10. S. Yadav, N. Kumar, V. Kumari, A. Mittal, S. Sharma, Mater. Today Proc. 19, 650–657 (2019)

    Google Scholar 

  11. D. Sethi, R. Sakthivel, J. Photochem. Photobiol. B Biol. 168, 117 (2017)

    CAS  Google Scholar 

  12. R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, Ceram. Int. 41, 5429 (2015)

    CAS  Google Scholar 

  13. C. Yu, K. Yang, Q. Shu, J.C. Yu, F. Cao, X. Li, Chin. J. Catal. 32, 555 (2011)

    CAS  Google Scholar 

  14. S. Das, V.C. Srivastava, J. Nano Res. 35, 21 (2015)

    Google Scholar 

  15. V. Kumari, N. Kumar, S. Yadav, A. Mittal, S. Sharma, Mater. Today Proc. 19, 650–657 (2019)

    Google Scholar 

  16. Y. Liu, L. Sun, J. Wu, T. Fang, R. Cai, A. Wei, Mater. Sci. Eng. B 194, 9 (2015)

    CAS  Google Scholar 

  17. Y. Li, X. Liu, J. Li, J. Rare Earths 28, 571 (2010)

    CAS  Google Scholar 

  18. R. Saravanan, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 181, 133 (2013)

    CAS  Google Scholar 

  19. R. Saravanan, N. Karthikeyan, V.K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, A. Stephen, Mater. Sci. Eng. C 33, 2235 (2013)

    CAS  Google Scholar 

  20. X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503 (2010)

    CAS  Google Scholar 

  21. D.G. Shchukin, R.A. Caruso, Chem. Mater. 16, 2287 (2004)

    CAS  Google Scholar 

  22. N. Sabari Arul, D. Mangalaraj, T.W. Kim, P.C. Chen, N. Ponpandian, P. Meena, Y. Masuda, J. Mater. Sci. Mater. Electron. 24, 1644 (2013)

    CAS  Google Scholar 

  23. F. Meng, L. Wang, J. Cui, J. Alloy. Compd. 556, 102 (2013)

    CAS  Google Scholar 

  24. Z. Fan, F. Meng, J. Gong, H. Li, Y. Hu, D. Liu, Mater. Lett. 175, 36 (2016)

    CAS  Google Scholar 

  25. C. Li, X. Zhang, W. Dong, Y. Liu, Mater. Lett. 80, 145 (2012)

    CAS  Google Scholar 

  26. J. Kaur, S. Bhukal, K. Gupta, M. Tripathy, S. Bansal, S. Singhal, Mater. Chem. Phys. 177, 512 (2016)

    CAS  Google Scholar 

  27. Z. Lv, Q. Zhong, M. Ou, Appl. Surf. Sci. 376, 91 (2016)

    CAS  Google Scholar 

  28. C. Wang, H. Fan, X. Ren, J. Fang, Appl. Phys. A 124, 99 (2018)

    CAS  Google Scholar 

  29. M.H. Habibi, M. Fakhrpor, J. Mater. Sci. Mater. Electron. 28, 2697 (2017)

    CAS  Google Scholar 

  30. T.-Y. Ma, Z.-Y. Yuan, J.-L. Cao, Eur. J. Inorg. Chem. 2010, 716 (2010)

    Google Scholar 

  31. A. Hezam, K. Namratha, Q.A. Drmosh, Z.H. Yamani, K. Byrappa, Ceram. Int. 43, 5292 (2017)

    CAS  Google Scholar 

  32. X. Xiong, R. Tian, X. Lin, D. Chu, S. Li, J. Nanomater. 2015, 1 (2015)

    Google Scholar 

  33. Z. Cui, H. Yang, B. Wang, R. Li, X. Wang, Nanoscale Res. Lett. 11, 190 (2016)

    Google Scholar 

  34. J. Gong, F. Meng, Z. Fan, H. Li, Z. Du, J. Alloy. Compd. 690, 677 (2017)

    CAS  Google Scholar 

  35. L. Wang, F. Meng, K. Li, F. Lu, Appl. Surf. Sci. 286, 269 (2013)

    CAS  Google Scholar 

  36. D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Phys. B Condens. Matter 403, 3713 (2008)

    CAS  Google Scholar 

  37. Z. Yanqing, S. Erwei, C. Zhizhan, L. Wenjun, H. Xingfang, J. Mater. Chem. 11, 1547 (2001)

    Google Scholar 

  38. I.-T. Liu, M.-H. Hon, L.G. Teoh, Ceram. Int. 40, 4019 (2014)

    CAS  Google Scholar 

  39. P. Trogadas, J. Parrondo, V. Ramani, Chem. Commun. 47, 11549 (2011)

    CAS  Google Scholar 

  40. T.S. Jeong, J.H. Kim, S.J. Bae, C.J. Youn, Cryst. Res. Technol. 43, 289 (2008)

    CAS  Google Scholar 

  41. E. Ramasamy, J. Lee, Energy Environ. Sci. 4, 2529 (2011)

    CAS  Google Scholar 

  42. M.T. Qamar, M. Aslam, I.M.I. Ismail, N. Salah, A. Hameed, A.C.S. Appl. Mater. Interfaces 7, 8757 (2015)

    CAS  Google Scholar 

  43. K. Mageshwari, D. Nataraj, T. Pal, R. Sathyamoorthy, J. Park, J. Alloy. Compd. 625, 362 (2015)

    CAS  Google Scholar 

  44. R.K. Nagarale, U. Hoss, A. Heller, J. Am. Chem. Soc. 134, 20783 (2012)

    CAS  Google Scholar 

  45. S. Hussain, N. Aslam, X. Yang, M.S. Javed, Z. Xu, M. Wang, G. Liu, G. Qiao, Ceram. Int. 44, 19624 (2018)

    CAS  Google Scholar 

  46. R. Saravanan, N. Karthikeyan, S. Govindan, V. Narayanan, A. Stephen, Adv. Mater. Res. 584, 381 (2012)

    CAS  Google Scholar 

  47. P.-C. Chen, M.-C. Tsai, M.-H. Yang, T.-T. Chen, H.-C. Chen, I.-C. Chang, Y.-C. Chang, Y.-L. Chen, I.-N. Lin, H.-T. Chiu, C.-Y. Lee, Appl. Catal. B Environ. 142–143, 752 (2013)

    Google Scholar 

  48. A. Mittal, S. Sharma, T. Kumar, N.S. Chauhan, K. Kumari, S. Maken, N. Kumar, J. Mater. Sci. Mater. Electron. 31, 2010–2021 (2019)

    Google Scholar 

  49. A.A. Khodja, T. Sehili, J.-F. Pilichowski, P. Boule, J. Photochem. Photobiol. A Chem. 141, 231 (2001)

    CAS  Google Scholar 

  50. M. Qamar, M. Muneer, D. Bahnemann, J. Environ. Manag. 80, 99 (2006)

    CAS  Google Scholar 

  51. M.A. Subhan, N. Uddin, P. Sarker, H. Nakata, R. Makioka, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 151, 56 (2015)

    CAS  Google Scholar 

  52. S. Prabhu, T. Viswanathan, K. Jothivenkatachalam, K. Jeganathan, Indian J. Mater. Sci. 2014, 1 (2014)

    Google Scholar 

Download references

Acknowledgments

VK and NK are highly thankful to the M. D. University, Rohtak for the financial support in the form of University Research Fellowship and Radha Krishnan Fund, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, V., Yadav, S., Mittal, A. et al. Hydrothermally synthesized nano-carrots ZnO with CeO2 heterojunctions and their photocatalytic activity towards different organic pollutants. J Mater Sci: Mater Electron 31, 5227–5240 (2020). https://doi.org/10.1007/s10854-020-03083-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03083-6

Navigation