Skip to main content
Log in

Ionic liquid-derivatized hierarchical N-doped carbon-coated Co3O4 nanosheet array as high-performance anode materials for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel nitrogen-doped carbon-coated graded Co3O4 nanosheets (NDC/Co3O4 NS) is synthesized by using a simple ionic liquid hydrothermal method. The as-prepared NDC/Co3O4 NS is composed of hexagonal nanosheets having different orientation and the thickness of 50–100 nm. Significantly, as an anode electrode for lithium-ion batteries (LIBs), the NDC/Co3O4 NS performed excellent cyclability. The NDC/Co3O4 NS delivers an initial discharge capacity of 1281.4 mAh g−1 at 445 mA g−1 and maintains a reversible high capacity of 929.4 mAh g−1 after 50 cycles, much higher than the unmodified Co3O4 nanosheets (230 mAh g−1). The superior excellent electrochemical performance can be attributed to the gradient structure and the nitrogen-doped carbon coating resulting in shorter ion transport distances and good electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Pineda-Aguilar, L.L. Garza-Tovar, E.M. Sánchez-Cervantes, M. Sánchez-Domínguez, Preparation of TiO2–(B) by microemulsion mediated hydrothermal method: effect of the precursor and its electrochemical performance. J. Mater. Sci.: Mater. Electron. 29(18), 15464–15479 (2018). https://doi.org/10.1007/s10854-018-9085-1

    Article  CAS  Google Scholar 

  2. M. Zhang, H. Fan, N. Zhao, H. Peng, X. Ren, W. Wang, H. Li, G. Chen, Y. Zhu, X. Jiang, P. Wu, 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density. Chem. Eng. J. 347, 291–300 (2018). https://doi.org/10.1016/j.cej.2018.04.113

    Article  CAS  Google Scholar 

  3. A. Subramania, N. Angayarkanni, R. Gangadharan, T. Vasudevan, Synthesis of nanocrystalline LiCdxMn2-xO4 cathode materials by using a new combustion fuel for Li-ion polymer battery. Synth. React. Inorg. Met-Org. Nano-Met. Chem. 36(2), 203–207 (2006). https://doi.org/10.1080/15533170500524660

    Article  CAS  Google Scholar 

  4. S.N. Karthick, S. Richard Prabhu Gnanakan, A. Subramania, H.-J. Kim, Nanocrystalline LiMn2O4 thin film cathode material prepared by polymer spray pyrolysis method for Li-ion battery. J. Alloys Compd. 489(2), 674–677 (2010). https://doi.org/10.1016/j.jallcom.2009.09.147

    Article  CAS  Google Scholar 

  5. A. Subramania, N. Angayarkanni, T. Vasudevan, Synthesis of nano-crystalline LiSrxMn2−xO4 powder by a novel sol–gel thermolysis process for Li-ion polymer battery. J. Power Sources 158(2), 1410–1413 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.073

    Article  CAS  Google Scholar 

  6. A. Subramania, N. Angayarkanni, T. Vasudevan, Polyaspartic-acid-pyrolysis route for the synthesis of nanocrystalline LiCo0.15Mn1.85O4 powder for Li-ion batteries. Ionics 13(2), 61 (2007). https://doi.org/10.1007/s11581-007-0067-1

    Article  CAS  Google Scholar 

  7. N.T. Kalyana Sundaram, A. Subramania, Nano-size LiAlO2 ceramic filler incorporated porous PVDF-co-HFP electrolyte for lithium-ion battery applications. Electrochim. Acta 52(15), 4987–4993 (2007). https://doi.org/10.1016/j.electacta.2007.01.066

    Article  CAS  Google Scholar 

  8. X.-C. Zhao, P. Yang, T. Ding, L.-J. Yang, X. Mai, H. Chen, G. Wang, Y. Ma, X. Wang, V. Murugadoss, S. Angaiah, Y.-P. Wang, H. Liu, Z.-H. Guo, Hydrothermally synthesized Li4Ti5O12 nanotubes anode material with enhanced Li-ion battery performances. J. Nanosci. Nanotechnol. 19(11), 7387–7391 (2019). https://doi.org/10.1166/jnn.2019.16668

    Article  CAS  Google Scholar 

  9. J.R. Rodriguez, H.J. Hamann, G.M. Mitchell, V. Ortalan, V.G. Pol, P.V. Ramachandran, Three-dimensional antimony nanochains for lithium-ion storage. ACS Appl. Nano Mater. 2(9), 5351–5355 (2019). https://doi.org/10.1021/acsanm.9b01316

    Article  CAS  Google Scholar 

  10. X. Li, X. Tian, T. Yang, Y. Song, Y. Liu, Q. Guo, Z. Liu, Two-pot synthesis of one-dimensional hierarchically porous Co3O4 nanorods as anode for lithium-ion battery. J. Alloys Compd. 735, 2446–2452 (2018). https://doi.org/10.1016/j.jallcom.2017.12.001

    Article  CAS  Google Scholar 

  11. X. Rui, H. Tan, D. Sim, W. Liu, C. Xu, H.H. Hng, R. Yazami, T.M. Lim, Q. Yan, Template-free synthesis of urchin-like Co3O4 hollow spheres with good lithium storage properties. J. Power Sources 222, 97–102 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.094

    Article  CAS  Google Scholar 

  12. J. Cabana, L. Monconduit, D. Larcher, M.R. Palacin, Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22(35), E170–E192 (2010). https://doi.org/10.1002/adma.201000717

    Article  CAS  Google Scholar 

  13. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000). https://doi.org/10.1038/35035045

    Article  CAS  Google Scholar 

  14. T. Maruyama, S. Arai, Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition. J. Electrochem. Soc. 143(4), 1383–1386 (1996). https://doi.org/10.1149/1.1836646

    Article  CAS  Google Scholar 

  15. M. Kumar, A. Subramania, K. Balakrishnan, Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochim. Acta 149, 152–158 (2014). https://doi.org/10.1016/j.electacta.2014.10.021

    Article  CAS  Google Scholar 

  16. L. Zhan, S.Q. Wang, L.X. Ding, Z. Li, H.H. Wang, Grass-like Co3O4 nanowire arrays anode with high rate capability and excellent cycling stability for lithium-ion batteries. Electrochim. Acta 135, 35–41 (2014). https://doi.org/10.1016/j.electacta.2014.04.139

    Article  CAS  Google Scholar 

  17. K.M. Shaju, F. Jiao, A. Debart, P.G. Bruce, Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 9(15), 1837–1842 (2007). https://doi.org/10.1039/b617519h

    Article  CAS  Google Scholar 

  18. Y. Yao, Y. Zhu, S. Zhao, J. Shen, X. Yang, C. Li, Halide ion intercalated electrodeposition synthesis of Co3O4 nanosheets with tunable pores on graphene foams as free-standing and flexible Li-ion battery anodes. ACS Appl. Energy Mater. 1(3), 1239–1251 (2018). https://doi.org/10.1021/acsaem.7b00351

    Article  CAS  Google Scholar 

  19. L. Liu, H. Zhang, Y. Mu, J. Yang, Y. Wang, Porous iron cobaltate nanoneedles array on nickel foam as anode materials for lithium-ion batteries with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 8(2), 1351–1359 (2016). https://doi.org/10.1021/acsami.5b10237

    Article  CAS  Google Scholar 

  20. J. Liu, W. Zhou, L. Lai, H. Yang, S. Hua Lim, Y. Zhen, T. Yu, Z. Shen, J. Lin, Three dimensionals α-Fe2O3/polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries. Nano Energy 2(5), 726–732 (2013). https://doi.org/10.1016/j.nanoen.2012.12.008

    Article  CAS  Google Scholar 

  21. H. Zhang, Y. Zhou, Y. Ma, J. Yao, X. Li, Y. Sun, Z. Xiong, D. Li, RF magnetron sputtering synthesis of three-dimensional graphene@Co3O4 nanowire array grown on Ni foam for application in supercapacitors. J. Alloys Compd. 740, 174–179 (2018). https://doi.org/10.1016/j.jallcom.2018.01.006

    Article  CAS  Google Scholar 

  22. T. Wang, Z. Jiang, T. An, G. Li, H. Zhao, P.K. Wong, Enhanced visible-light-driven photocatalytic bacterial inactivation by ultrathin carbon-coated magnetic cobalt ferrite nanoparticles. Environ. Sci. Technol. 52(8), 4774–4784 (2018). https://doi.org/10.1021/acs.est.7b06537

    Article  CAS  Google Scholar 

  23. D. Xu, C. Mu, J. Xiang, F. Wen, C. Su, C. Hao, W. Hu, Y. Tang, Z. Liu, Carbon-encapsulated Co3O4@CoO@Co nanocomposites for multifunctional applications in enhanced long-life lithium storage, supercapacitor and oxygen evolution reaction. Electrochim. Acta 220, 322–330 (2016). https://doi.org/10.1016/j.electacta.2016.10.116

    Article  CAS  Google Scholar 

  24. J. Chen, X.-H. Xia, J.-P. Tu, Q.-Q. Xiong, Y.-X. Yu, X.-L. Wang, C.-D. Gu, Co3O4–C core–shell nanowire array as an advanced anode material for lithium ion batteries. J. Mater. Chem. 22(30), 15056 (2012). https://doi.org/10.1039/c2jm31629c

    Article  CAS  Google Scholar 

  25. D. Li, X. Li, S. Wang, Y. Zheng, L. Qiao, D. He, Carbon-wrapped Fe3O4 nanoparticle films grown on nickel foam as binder-free anodes for high-rate and long-life lithium storage. ACS Appl. Mater. Interfaces 6(1), 648–654 (2014). https://doi.org/10.1021/am404756h

    Article  CAS  Google Scholar 

  26. X. Wang, S. Dai, Ionic liquids as versatile precursors for functionalized porous carbon and carbon-oxide composite materials by confined carbonization. Angew. Chem. Int. Ed. 49(37), 6664–6668 (2010). https://doi.org/10.1002/anie.201003163

    Article  CAS  Google Scholar 

  27. J.S. Lee, X. Wang, H. Luo, G.A. Baker, S. Dai, Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J. Am. Chem. Soc. 131(13), 4596–4597 (2009). https://doi.org/10.1021/ja900686d

    Article  CAS  Google Scholar 

  28. L. Zhi, Y.-S. Hu, B.E. Hamaoui, X. Wang, I. Lieberwirth, U. Kolb, J. Maier, K. Müllen, Precursor-controlled formation of novel carbon/metal and carbon/metal oxide nanocomposites. Adv. Mater. 20(9), 1727–1731 (2008). https://doi.org/10.1002/adma.200702654

    Article  CAS  Google Scholar 

  29. P.F. Fulvio, J.S. Lee, R.T. Mayes, X. Wang, S.M. Mahurin, S. Dai, Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties. Phys. Chem. Chem. Phys. 13(30), 13486–13491 (2011). https://doi.org/10.1039/C1CP20631A

    Article  CAS  Google Scholar 

  30. G. Wang, F. Zhu, J. Xia, L. Wang, Y. Meng, Y. Zhang, Preparation of Co3O4/carbon derived from ionic liquid and its application in lithium-ion batteries. Electrochim. Acta 257, 138–145 (2017). https://doi.org/10.1016/j.electacta.2017.10.077

    Article  CAS  Google Scholar 

  31. X. Liu, Y. Wu, Z. Yang, F. Pan, X. Zhong, J. Wang, L. Gu, Y. Yu, Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries. J. Power Sources 293, 799–805 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.074

    Article  CAS  Google Scholar 

  32. W. Ren, D. Li, H. Liu, R. Mi, Y. Zhang, L. Dong, L. Dong, Lithium storage performance of carbon nanotubes with different nitrogen contents as anodes in lithium ions batteries. Electrochim. Acta 105, 75–82 (2013). https://doi.org/10.1016/j.electacta.2013.04.145

    Article  CAS  Google Scholar 

  33. L. Qie, W.-M. Chen, Z.-H. Wang, Q.-G. Shao, X. Li, L.-X. Yuan, X.-L. Hu, W.-X. Zhang, Y.-H. Huang, Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 24(15), 2047–2050 (2012). https://doi.org/10.1002/adma.201104634

    Article  CAS  Google Scholar 

  34. X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131(43), 15939–15944 (2009). https://doi.org/10.1021/ja907098f

    Article  CAS  Google Scholar 

  35. S. Ghosh, S.R. Polaki, P.K. Ajikumar, N.G. Krishna, M. Kamruddin, Aging effects on vertical graphene nanosheets and their thermal stability. Indian J. Phys. 92(3), 337–342 (2018). https://doi.org/10.1007/s12648-017-1113-0

    Article  CAS  Google Scholar 

  36. J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51(46), 11496–11500 (2012). https://doi.org/10.1002/anie.201206720

    Article  CAS  Google Scholar 

  37. K.T. Lee, J.C. Lytle, N.S. Ergang, S.M. Oh, A. Stein, Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv. Funct. Mater. 15(4), 547–556 (2005). https://doi.org/10.1002/adfm.200400186

    Article  CAS  Google Scholar 

  38. G. Sun, L. Ma, J. Ran, X. Shen, H. Tong, Incorporation of homogeneous Co3O4 into a nitrogen-doped carbon aerogel via a facile in situ synthesis method: implications for high performance asymmetric supercapacitors. J. Mater. Chem. A 4(24), 9542–9554 (2016). https://doi.org/10.1039/C6TA03884K

    Article  CAS  Google Scholar 

  39. G. Cheng, T. Kou, J. Zhang, C. Si, H. Gao, Z. Zhang, O22-/O- functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 38, 155–166 (2017). https://doi.org/10.1016/j.nanoen.2017.05.043

    Article  CAS  Google Scholar 

  40. W. Bao, B. Yu, W. Li, H. Fan, J. Bai, Z. Ren, Co3O4/nitrogen-doped graphene/carbon nanotubes: an innovative ternary composite with enhanced electrochemical performance. J. Alloys Compd. 647, 873–879 (2015). https://doi.org/10.1016/j.jallcom.2015.06.128

    Article  CAS  Google Scholar 

  41. Z. Wei, J. Wang, S. Mao, D. Su, H. Jin, Y. Wang, F. Xu, H. Li, Y. Wang, In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes. ACS Catal. 5(8), 4783–4789 (2015). https://doi.org/10.1021/acscatal.5b00737

    Article  CAS  Google Scholar 

  42. Z. Jia, Y. Tan, J. Sun, Y. Wang, Z. Cui, X. Guo, Facile synthesis of N-doped carbon-coated nickel oxide nanoparticles embedded in N-doped carbon sheets for reversible lithium storage. J. Alloys Compd. 745, 147–154 (2018). https://doi.org/10.1016/j.jallcom.2018.02.167

    Article  CAS  Google Scholar 

  43. Z. Guo, F. Wang, Y. Xia, J. Li, A.G. Tamirat, Y. Liu, L. Wang, Y. Wang, Y. Xia, In situ encapsulation of core–shell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries. J. Mater. Chem. A 6(4), 1443–1453 (2018). https://doi.org/10.1039/c7ta09958d

    Article  CAS  Google Scholar 

  44. X. Tang, Q. Feng, J. Huang, K. Liu, X. Luo, Q. Peng, Carbon-coated cobalt oxide porous spheres with improved kinetics and good structural stability for long-life lithium-ion batteries. J. Colloid Interface Sci. 510, 368–375 (2018). https://doi.org/10.1016/j.jcis.2017.09.086

    Article  CAS  Google Scholar 

  45. X. Li, Z. Yang, W. Qi, Y. Li, Y. Wu, S. Zhou, S. Huang, J. Wei, H. Li, P. Yao, Binder-free Co3O4@NiCoAl-layered double hydroxide core-shell hybrid architectural nanowire arrays with enhanced electrochemical performance. Appl. Surf. Sci. 363, 381–388 (2016). https://doi.org/10.1016/j.apsusc.2015.12.039

    Article  CAS  Google Scholar 

  46. L. Luo, J. Wu, J. Xu, V.P. Dravid, Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery. ACS Nano 8(11), 11560–11566 (2014). https://doi.org/10.1021/nn504806h

    Article  CAS  Google Scholar 

  47. Y. Wang, H.J. Zhang, L. Lu, L.P. Stubbs, C.C. Wong, J. Lin, Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. ACS Nano 4(8), 4753–4761 (2010). https://doi.org/10.1021/nn1004183

    Article  CAS  Google Scholar 

  48. Y. Meng, J. Xia, F. Zhu, Y. Zhang, Synthesis of N-doped carbon by microwave-assisited pyrolysis ionic liquid for lithium-ion batteries. Int. J. Electrochem. Sci. 11(11), 9881–9890 (2016). https://doi.org/10.20964/2016.12.08

    Article  CAS  Google Scholar 

  49. X. Wang, X.-L. Wu, Y.-G. Guo, Y. Zhong, X. Cao, Y. Ma, J. Yao, Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 20(10), 1680–1686 (2010). https://doi.org/10.1002/adfm.200902295

    Article  CAS  Google Scholar 

  50. X. Fan, Y. Shi, L. Gou, D. Li, Electrodeposition of three-dimensional macro-/mesoporous Co3O4 nanosheet arrays as for ultrahigh rate lithium-ion battery. Electrochim. Acta 142, 268–275 (2014). https://doi.org/10.1016/j.electacta.2014.08.003

    Article  CAS  Google Scholar 

  51. R. Hu, H. Zhang, Y. Bu, H. Zhang, B. Zhao, C. Yang, Porous Co3O4 nanofibers surface-modified by reduced graphene oxide as a durable, high-rate anode for lithium ion battery. Electrochim. Acta 228, 241–250 (2017). https://doi.org/10.1016/j.electacta.2017.01.067

    Article  CAS  Google Scholar 

  52. H. Yang, Y. Wang, Y. Nie, S. Sun, T. Yang, Co3O4/porous carbon nanofibers composite as anode for high-performance lithium ion batteries with improved cycle performance and lithium storage capacity. J. Compos. Mater. 51(3), 315–322 (2016). https://doi.org/10.1177/0021998316644856

    Article  CAS  Google Scholar 

  53. M. Du, Y. Meng, L. Wang, C. Duan, F. Zhu, Y. Zhang, Porous carbon doped by different nitrogen sources and its electrochemical properties. Int. J. Electrochem. Sci. 13, 4401–4410 (2018). https://doi.org/10.20964/2018.05.51

    Article  CAS  Google Scholar 

  54. W. Yao, J. Yang, J. Wang, Y. Nuli, Multilayered cobalt oxide platelets for negative electrode material of a lithium-ion battery. J. Electrochem. Soc. 155(12), A903 (2008). https://doi.org/10.1149/1.2987945

    Article  CAS  Google Scholar 

  55. L. Peng, Y. Ouyang, W. Li, H.-J. Qiu, Y. Wang, Facile synthesis of mesoporous Co3O4–carbon nanowires array nanocomposite for the enhanced lithium storage. Electrochim. Acta 190, 126–133 (2016). https://doi.org/10.1016/j.electacta.2015.12.204

    Article  CAS  Google Scholar 

  56. C. Song, D. Zhang, K. Ye, W. Zeng, X. Yang, Y. Wang, Y. Shen, D. Cao, K. Cheng, G. Wang, In-situ reduced petal-like cobalt on Ni foam based cobaltosic oxide as an efficient catalyst for hydrogen peroxide electroreduction. J. Electroanal. Chem. 788, 74–82 (2017). https://doi.org/10.1016/j.jelechem.2017.02.003

    Article  CAS  Google Scholar 

  57. K. Feng, H.W. Park, X. Wang, D.U. Lee, Z. Chen, High performance porous anode based on template-free synthesis of Co3O4 nanowires for lithium-ion batteries. Electrochim. Acta 139, 145–151 (2014). https://doi.org/10.1016/j.electacta.2014.07.005

    Article  CAS  Google Scholar 

  58. J. Chen, X. Wu, Q. Tan, Y. Chen, Designed synthesis of ultrafine NiO nanocrystals bonded on a three dimensional graphene framework for high-capacity lithium-ion batteries. New J. Chem. 42(12), 9901–9910 (2018). https://doi.org/10.1039/C8NJ01330F

    Article  CAS  Google Scholar 

  59. Q. Xia, H. Zhao, Z. Du, Z. Zhang, S. Li, C. Gao, K. Świerczek, Design and synthesis of a 3-D hierarchical molybdenum dioxide/nickel/carbon structured composite with superior cycling performance for lithium ion batteries. J. Mater. Chem. A 4(2), 605–611 (2016). https://doi.org/10.1039/C5TA07052J

    Article  CAS  Google Scholar 

  60. K. Prasanna, T. Subburaj, Y.N. Jo, P. Santhoshkumar, S. Karthikeyan, K. Vediappan, R.M. Gnanamuthu, C.W. Lee, Chitosan complements entrapment of silicon inside nitrogen doped carbon to improve and stabilize the capacity of Li-ion batteries. Sci. Rep. 9(1), 3318 (2019). https://doi.org/10.1038/s41598-019-39988-4

    Article  CAS  Google Scholar 

  61. H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, G. Cui, Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem. 21(14), 5430–5434 (2011). https://doi.org/10.1039/C1JM00049G

    Article  CAS  Google Scholar 

  62. J. Dai, M. Song, M. Wang, P. Li, C. Zhang, Y. Shen, A. Xie, Freeze-drying growth of Co3O4/N-doped reduced graphene oxide nanocomposite as excellent anode material for lithium-ion batteries. Ceram. Int. 42(2), 2410–2415 (2016). https://doi.org/10.1016/j.ceramint.2015.10.040

    Article  CAS  Google Scholar 

  63. Z. Wang, X. Zhang, Y. Sun, C. Wang, H. Zhang, Y. Shen, A. Xie, In situ synthesis of nori-derived sponge-like N, P-codoped C/Co3O4 composite as advanced anode material for lithium-ion batteries. J. Alloys Compd. 740, 446–451 (2018). https://doi.org/10.1016/j.jallcom.2017.12.020

    Article  CAS  Google Scholar 

  64. M. Xiao, Y. Meng, C. Duan, Q. Hu, R. Li, F. Zhu, Y. Zhang, Preparation of Co3O4/nitrogen-doped carbon composite by in situ solvothermal with ionic liquid and its electrochemical performance as lithium-ion battery anode. Ionics 25(2), 475–482 (2018). https://doi.org/10.1007/s11581-018-2831-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grant Nos. 51364024, 51404124).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuliang Zhu or Yue Zhang.

Ethics declarations

Conflict of interest

The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Meng, Y., Hu, Q. et al. Ionic liquid-derivatized hierarchical N-doped carbon-coated Co3O4 nanosheet array as high-performance anode materials for lithium-ion batteries. J Mater Sci: Mater Electron 31, 4997–5007 (2020). https://doi.org/10.1007/s10854-020-03066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03066-7

Navigation