Skip to main content

Advertisement

Log in

Engineering of Ni3S4/Co3S4 nanosheets@N, S co-doped carbon anode for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Developing lithium-ion batteries (LIBs) with high electrochemical performance to meet the energy storage requirements has become a research hotspot. Transition metal sulfides (TMSs) have drawn much attention because of their long cycle life and significantly specific capacity. Herein, we synthesize the Ni3S4/Co3S4 nanosheets@N, S co-doped carbon (Ni3S4/Co3S4@NSC) composites by hydrothermal technology. Such nanosheets constituted by heterostructure and glass state of Ni3S4 and Co3S4 are beneficial to lithium-ion transport, and N, S co-doping improves electronic structure for the enhancement of electronic conductivity. Its synergetic effect delivers a high specific capacity of 1619.1 mA h g−1 at a current density of 100 mA g−1 with a stable coulombic efficiency of ∼97%. Unique 120° angle formed by assembling nanosheets on the surface of mesoporous carbon facilitates a good cycle stability (a capacity retention ratio of ∼74.3% over 100 cycles). This work provides a new strategy to regulate performance of LIB anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dutta A, Bouri E, Saeed T, Vo XV (2020) Impact of energy sector volatility on clean energy assets. Energy 212:118657. https://doi.org/10.1016/j.energy.2020.118657

    Article  Google Scholar 

  2. Baumann M, Barelli L, Passerini S (2020) The potential role of reactive metals for a clean energy transition. Adv Energy Mater 10(27):2001002. https://doi.org/10.1002/aenm.202001002

    Article  CAS  Google Scholar 

  3. Liu Q, Yi X, Xu H (2020) Effect of different arrangement on thermal runaway characteristics of 18650 lithium ion batteries under the typical pressure in civil aviation transportation. Fire Technol 56:2509–2523. https://doi.org/10.1007/s10694−020−00984−0

    Article  Google Scholar 

  4. Hein S, Danner T, Latz A (2020) An electrochemical model of lithium plating and stripping in lithium ion batteries. ACS Appl Energy Mater 3(9):8519–8531. https://doi.org/10.1002/acsaem.0c01155

    Article  CAS  Google Scholar 

  5. Kim JH, Jung MJ, Kim MJ, Lee YS (2018) Electrochemical performances of lithium and sodium ion batteries based on carbon materials. J Ind Eng Chem 61:368–380. https://doi.org/10.1016/j.jiec.2017.12.036

    Article  CAS  Google Scholar 

  6. Cha H, Lee Y, Kim J, Park M, Cho J (2018) Flexible 3D interlocking lithium−ion batteries. Adv Energy Mater 8(30):1801917. https://doi.org/10.1002/aenm.201801917

    Article  CAS  Google Scholar 

  7. Lyu YC, Wu X, Wang K, Feng ZJ, Cheng T, Liu Y, Wang M, Chen R, Xu LM, Zhou JJ, Lu YH, Guo BK (2020) An overview on the advances of LiCoO2 cathodes for lithium−ion batteries. Adv Energy Mater 11(2):2000982. https://doi.org/10.1002/aenm.202000982

    Article  CAS  Google Scholar 

  8. Liu YY, Ge Z, Sun ZH, Zhang Y, Dong CQ, Zhang MT, Li ZJ, Chen YS (2019) A high−performance energy storage system from sphagnum uptake waste LIBs with negative greenhouse−gas emission. Nano Energy 67:104216. https://doi.org/10.1016/j.nanoen.2019.104216

    Article  CAS  Google Scholar 

  9. Han JG, Hwang CH, Kim SH, Park C, Kim J, Jung GY, Baek K, Chae S, Kang SJ, Cho J, Kwak SK, Song HK, Choi NS (2020) An antiaging electrolyte additive for high−energy−density lithium−ion batteries. Adv Energy Mater 10(20):2000563. https://doi.org/10.1002/aenm.202000563

    Article  CAS  Google Scholar 

  10. Voronina N, Sun YK, Myung ST (2020) Co-free layered cathode materials for high energy density lithium−ion batteries. ACS Energy Lett 5(6):1814–1824. https://doi.org/10.1021/acsenergylett.0c00742

    Article  CAS  Google Scholar 

  11. Zheng MB, Tang H, Li LL, Hu Q, Zhang L, Xue HG, Pang H (2018) Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci 5(3):1700592. https://doi.org/10.1002/advs.201700592

    Article  CAS  Google Scholar 

  12. Gong QH, Gao TT, Huang H, Wang RX, Cao P, Zhou GW (2018) Double-shelled CeO2@C hollow nanospheres as enhanced anode materials for lithium−ion batteries. Inorg Chem Front 5:3197–3204. https://doi.org/10.1039/c8qi01068d

    Article  CAS  Google Scholar 

  13. Fei L, Jiang YF, Xu Y, Chen G, Li YL, Xu X, Deng SG, Luo HM (2014) A novel solvent-free thermal reaction of ferrocene and sulfur for one-step synthesis of iron sulfide and carbon nanocomposites and their electrochemical performance. J Power Sources 265:1–5. https://doi.org/10.1016/j.jpowsour.2014.04.110

    Article  CAS  Google Scholar 

  14. Zhang SL, Guan BY, Wu HB, Lou XW (2018) Metal–organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett 10:44. https://doi.org/10.1007/s40820−018−0197−1

    Article  Google Scholar 

  15. Wu C, Huang HF, Lu WY, Wei ZX, Ni XY, Sun F, Qing P, Liu ZJ, Ma JM, Wei WF, Chen LB, Yan CL, Mai LQ (2020) Mg doped Li–LiB alloy with in situ formed lithiophilic liB skeleton for lithium metal batteries. Adv Sci 7(6):1902643. https://doi.org/10.1002/advs.201902643

    Article  CAS  Google Scholar 

  16. Liu H, Zhang X, Zhu YF, Cao B, Zhu QZ, Zhang P, Xu B, Wu F, Chen RJ (2019) Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2TxMXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett 11:65. https://doi.org/10.1007/s40820-019-0296-7

    Article  CAS  Google Scholar 

  17. Zhang WC, Pang WK, Sencadas V, Guo ZP (2018) Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2:534–547. https://doi.org/10.1016/j.joule.2018.04.022

    Article  CAS  Google Scholar 

  18. Gao ZY, Chen C, Chang JL, Chen LM, Wang PY, Wu DP, Xu F, Jiang K (2018) Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem Eng J 343:572–582. https://doi.org/10.1016/j.cej.2018.03.042

    Article  CAS  Google Scholar 

  19. Lu H, Tian K, Bu LM, Huang X, Li LY, Zhao Y, Wang F, Bai JM, Gao LJ, Zhao JQ (2021) Synergistic effect from coaxially integrated CNTs@MoS2/MoO2 composite enables fast and stable lithium storage. J Energy Chem 55:449–458. https://doi.org/10.1016/j.jechem.2020.07.033

    Article  Google Scholar 

  20. Zhao JB, Zhang YY, Wang YH, Li H, Peng YY (2018) The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. J Energy Chem 27(6):1536–1554. https://doi.org/10.1016/j.jechem.2018.01.009

    Article  Google Scholar 

  21. Yuan H, Kong L, Li T, Zhang Q (2017) A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chin Chem Lett 28:2180. https://doi.org/10.1016/j.cclet.2017.11.038

    Article  CAS  Google Scholar 

  22. Pier GS, Pietro A, Robertino Z, Francesca P (2021) Full recycling of spent lithium ion batteries with production of core-shellnanowires//exfoliated graphite asymmetric supercapacitor. J Energy Chem 60:32–60. https://doi.org/10.1016/j.jechem.2020.10.025

    Article  Google Scholar 

  23. Dai SR, Wang LC, Cao ML, Zhong ZC, Shen Y, Wang MK (2019) Design strategies in metal chalcogenides anode materials for high-performance sodium-ion battery. Mater Today Energy 12:114–128. https://doi.org/10.1016/j.mtener.2018.12.011

    Article  Google Scholar 

  24. Fang GZ, Wu ZX, Zhou J, Zhu CY, Cao XX, Lin TQ, Chen YM, Wang C, Pan AQ, Liang SQ (2018) Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv Energy Mater 8:1703155. https://doi.org/10.1002/aenm.201703155

    Article  CAS  Google Scholar 

  25. Liang MM, Zhao MS, Wang HY, Zheng QY, Song XP (2018) Superior cycling stability of a crystalline/amorphous Co3S4 core–shell heterostructure for aqueous hybrid supercapacitors. J Mater Chem A 6:21350–21359. https://doi.org/10.1039/c8ta08135b

    Article  CAS  Google Scholar 

  26. Liu XB, Wu ZP, Yin YH (2017) Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chem Eng J 323:330–339. https://doi.org/10.1016/j.cej.2017.04.115

    Article  CAS  Google Scholar 

  27. Wang XH, Shi B, Fang Y, Rong F, Huang FF, Que RH, Shao MG (2017) High capacitance and rate capability of a Ni3S2@CdS core–shell nanostructure supercapacitor. J Mater Chem A 5:7165–7172. https://doi.org/10.1039/C7TA00593H

    Article  CAS  Google Scholar 

  28. Lin JH, Liu YL, Wang YH, Jia HN, Chen SL, Qi JL, Qu CQ, Cao J, Fei WD, Feng JC (2017) Rational construction of nickel cobalt sulfide nanoflakes on CoO nanosheets with the help of carbon layer as the battery-like electrode for supercapacitors. J Power Sources 362:64–72. https://doi.org/10.1016/j.jpowsour.2017.07.014

    Article  CAS  Google Scholar 

  29. Zhang YF, Wang PX, Li GD, Fan JH, Gao CW, Wang ZY, Yue YZ (2019) Clarifying the charging induced nucleation in glass anode of Li-ion batteries and its enhanced performances. 57: 592–599. https://doi.org/10.1016/j.nanoen.2018.12.088

  30. Zhang YF, Wang PX, Zheng T, Li D, Li GD, Yue YZ (2018) Enhancing Li-ion battery anode performances via disorder/order engineering. Nano Energy 49:596–602. https://doi.org/10.1016/j.nanoen.2018.05.018

    Article  CAS  Google Scholar 

  31. Chen LF, Huang ZH, Liang HW, Guan QF, Yu SH (2013) Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv Mater 25:4746–4752. https://doi.org/10.1002/adma.201204949

    Article  CAS  PubMed  Google Scholar 

  32. Liu ZE (2003) Materials science. Northwestern Polytechnical University Press, Xi’an

    Google Scholar 

  33. Xu KR, Jiang XJ, Gong QH, Ren YQ, Gao TT, He YY, Xu XL, Cao P, Zhou GW (2021) The design and synthesis of Ni3S4/Co3S4 heterostructure@mesoporous carbon with hybrid-capacitance. Mater Lett 290:129489. https://doi.org/10.1016/j.matlet.2021.129489

    Article  CAS  Google Scholar 

  34. Xu XL, Qi CY, Hao ZD, Wang H, Jiu JT, Liu JB, Yan H, Suganuma K (2018) The surface coating of commercial LiFePO4 by utilizing ZIF-8 for high electrochemical performance lithium ion battery. Nano-Micro Lett 10:1. https://doi.org/10.1007/s40820-017-0154-4

    Article  CAS  Google Scholar 

  35. Jiao CW, Wang ZM, Zhao XX, Wang H, Wang J, Yu RB, Wang D (2019) Triple-shelled manganese-cobalt oxide hollow dodecahedra with highly enhanced performance for alkaline rechargeable battery. Angew Chem Int Edit 58:996–1001. https://doi.org/10.1002/anie.201811683

    Article  CAS  Google Scholar 

  36. Liu ZM, Lu TC, Song T, Yu XY, Lou XW, Paik U (2017) Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high–performance anode for sodium−ion batteries. Energy Environ Sci 10:1576–1580. https://doi.org/10.1039/c7ee01100h

    Article  CAS  Google Scholar 

  37. Tan ZQ, Ni K, Chen GX, Zeng WC, Tao ZC, Ikram M, Zhang QB, Wang HJ, Sun LT, Zhu XJ, Wu XJ, Ji HX, Ruoff RS, Zhu YW (2017) Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv Mater 29(8):1603414. https://doi.org/10.1002/adma.201603414

    Article  CAS  Google Scholar 

  38. Liu L, Rong H, Li JJ, Tong XW, Wang ZH (2017) Synthesis of hierarchical cobalt sulfide/cobalt basic salt nanocomposite via a vapor-phase hydrothermal method for supercapacitors. New J Chem 41:12147–12152. https://doi.org/10.1039/C7NJ02350B

    Article  CAS  Google Scholar 

  39. Xu QC, Jiang H, Zhang HX, Hu YJ, Li CZ (2019) Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Appl Catal B-Environ 242:60–66. https://doi.org/10.1016/j.apcatb.2018.09.064

    Article  CAS  Google Scholar 

  40. Liu P, Sui YW, Wei FX, Qi JQ, Meng QK, Ren YJ, He YZ (2019) Facile synthesis of CoNi2S4 nanoparticles grown on carbon fber cloth for supercapacitor application. J Mater Sci−Mater El 30:19077–19086. https://doi.org/10.1007/s10854-019-02304-x

    Article  CAS  Google Scholar 

  41. Wang X, Liu CK, Li Q, Li HS, Xu J, Chu XM, Zhang LJ, Zhao GX, Li HL, Guo ZP, Li SD, Zhao XS (2018) 3D heterogeneous Co3O4@Co3S4 nanoarrays grown on ni foam as a binder-free electrode for lithium−ion batteries. Chem Electro Chem 5(2):309–315. https://doi.org/10.1002/celc.201701050

    Article  CAS  Google Scholar 

  42. Zhang LS, Huang YP, Zhang YF, Gu HH, Fan W, Liu TX (2016) Flexible electrospun carbon nanofiber@NiS core/sheath hybrid membranes as binder-free anodes for highly reversible lithium storage. Adv Mater Inter 3(2):1500467. https://doi.org/10.1002/admi.201500467

    Article  CAS  Google Scholar 

  43. Gong QH, Wang HQ, Song W, Sun B, Cao P, Gu SN (2020) Tunable synthesis of hierarchical yolk/double–shelled SiOx@TiO2@C nanospheres for high–performance lithium–ion batteries. Chem Eur J 27(8):2654–2661. https://doi.org/10.1002/chem.202003246

    Article  CAS  PubMed  Google Scholar 

  44. Xu XL, Hao ZD, Wang H, Xie YZ, Liu JB, Yan H (2018) A facile synthetic route of nitrogen−doped graphite derived from chitosan for modifying LiFePO4 cathode. J Mater Sci–Mater El 29:16630–16638. https://doi.org/10.1007/s10854-018-9755-z

    Article  CAS  Google Scholar 

  45. Liao CY, Wen YW, Shan B, Zhai TY, Li HQ (2017) Probing the capacity loss of Li3VO4 anode upon Li insertion and extraction. J Power Sources 384:48–56. https://doi.org/10.1016/j.jpowsour.2017.02.075

    Article  CAS  Google Scholar 

  46. Huang FF, Ma JM, Xia HY, Huang YF, Zhao L, Su SM, Kang FY, He YB (2019) Capacity loss mechanism of the Li4Ti5O12 microsphere anode of lithium-ion batteries at high temperature and rate cycling conditions. ACS Appl Mater Interfaces 11:37357–37364. https://doi.org/10.1021/acsami.9b14119

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51972180, 51572134), Key Research & Development Project of Shandong Province (Grant No. 2019GGX102070), the funding from Qilu University of Technology, and the Program for Scientific Research Innovation Team in Colleges and Universities of Jinan (Grant No. 2018GXRC006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolong Xu or Guowei Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Ren, Y., Zhang, B. et al. Engineering of Ni3S4/Co3S4 nanosheets@N, S co-doped carbon anode for lithium-ion batteries. Ionics 27, 5089–5096 (2021). https://doi.org/10.1007/s11581-021-04270-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04270-z

Keywords

Navigation