Skip to main content
Log in

Two-step method to prepare the direct Z-scheme heterojunction hierarchical flower-like Ag@AgBr/Bi2MoO6 microsphere photocatalysts for waste water treatment under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, a novel Z-scheme Ag@AgBr/Bi2MoO6 heterojunction photocatalyst was synthesized via a two-step process: the hierarchical flower-like Bi2MoO6 microspheres were synthesized; Ag and AgBr were decorated to Bi2MoO6 microspheres. As an environmentally friendly catalyst, it can selectively achieve the conversion of organic pollutants without producing by-products via solar energy irradiation. Visible light excites Bi2MoO6 and AgBr nanoparticles to generate electron–hole pairs. Due to the high conductivity of Ag nanoparticles, electrons are conducted to AgBr via Ag nanoparticles and recombined electrostatically with hole of AgBr, which effectively inhibits the recombination of photo-generated hole–electron pairs. The unique electron transport path and flower-like microsphere structure allow free radicals to fully react with organic matter. The enhanced photocatalytic performance of the photocatalyst was evaluated by photodegradation of RB-19 under visible-light irradiation. After 120 min of irradiation, the degradation rate of Ag@AgBr/Bi2MoO6 to RB-19 reached 98.7%, which is much greater than the degradation performance of AgBr/Bi2MoO6 and Bi2MoO6. At the same time, after five cycles of testing, the ternary composite still has a degradation rate of 70%. In addition, the results of capture experiments showed that ·O2 and h+ are the main active substances for the decomposition of RB-19 dye molecules. The Mott–Schottky diagram explains the band structure of the catalyst. Thus, this study provides a new method for preparing Z-type photocatalysts and opens up new possibilities for selective organic conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. V. Iliev, D. Tomova, L. Bilyarska, Promoting the oxidative removal rate of 2,4-dichlorophenoxyacetic acid on gold-doped WO3/TiO2/reduced graphene oxide photocatalysts under UV light irradiation. J. Photochem. Photobiol. A 351, 69–77, (2018).

    CAS  Google Scholar 

  2. M.A. Álvarez, F. Orellana-García, M.V. López-Ramón, J. Rivera-Utrilla, M. Sánchez-Polo, Influence of operational parameters on photocatalytic amitrole degradation using nickel organic xerogel under UV irradiation. Arab. J. Chem. 11, 564–572, (2018).

    Google Scholar 

  3. M.J. Sampaio, A. Benyounes, P. Serp, J.L. Faria, C.G. Silva, Photocatalytic synthesis of vanillin using N-doped carbon nanotubes/ZnO catalysts under UV-LED irradiation. Appl. Catal. A 551, 71–78 (2018)

    CAS  Google Scholar 

  4. I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Novel stannite-type complex sulfide photocatalysts AI2-Zn-AIV-S4 (AI = Cu and Ag; AIV = Sn and Ge) for hydrogen evolution under visible-light irradiation. Chem. Mater. 22, 1402–1409, (2010).

    CAS  Google Scholar 

  5. L. Wang, P. Jin, J. Huang, H. She, Q. Wang, Integration of copper(II)-porphyrin zirconium metal–organic framework and titanium dioxide to construct Z-scheme system for highly improved photocatalytic CO2 reduction. ACS Sustainable Chemistry & Engineering 7, 15660–15670, (2019).

    CAS  Google Scholar 

  6. H. She, H. Zhou, L. Li, Z. Zhao, M. Jiang, J. Huang, L. Wang, Q. Wang, Construction of a two-dimensional composite derived from TiO2and SnS2 for enhanced photocatalytic reduction of CO2 into CH4. ACS Sustain. Chem. Eng. 7, 650–659, (2019).

    CAS  Google Scholar 

  7. E.L. Cuéllar, M.D.L. Cruz, K.H.L. Rodríguez, U.O. Méndez, Preparation of γ-Bi2MoO6 thin films by thermal evaporation deposition and characterization for photocatalytic applications. Catal. Today 166, 140–145, (2011).

    Google Scholar 

  8. H.S. Zhang, D. Yu, W. Wang, P. Gao, K.X. Bu, L.S. Zhang, S. Zhong, B.J. Liu, Multiple heterojunction system of Bi2MoO6/WO3/Ag3PO4 with enhanced visible-light photocatalytic performance towards dye degradation. Adv. Powder Technol. 30, 1910–1919, (2019).

    CAS  Google Scholar 

  9. M.Q. Yang, Y. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, Visible-light-driven oxidation of primary C–H bonds over CdS with dual co-catalysts graphene and TiO2. Sci. Rep. 3, p. 3314, (2013).

    Google Scholar 

  10. Z.J. Zhu, C.M. Wang, L.J. Liang, D. Yu, J. Sun, L.S. Zhang, S. Zhong, B.J. Liu, Synthesis of novel ternary photocatalyst Ag3PO4/Bi2WO6/multi-walled carbon nanotubes and its enhanced visible-light photoactivity for photodegradation of norfloxacin. J. Nanosci. Nanotechnol. 20, 2247–2258, (2020).

    Google Scholar 

  11. Y.L. Min, F.J. Zhang, W. Zhao, F.C. Zheng, Y.C. Chen, Y.G. Zhang, Hydrothermal synthesis of nanosized bismuth niobate and enhanced photocatalytic activity by coupling of graphene sheets. Chem. Eng. J. 209, 215–222, (2012).

    CAS  Google Scholar 

  12. M.D.L. Cruz, U.M. García-Pérez, S. Sepúlveda-Guzmán, Characterization of the visible-light-driven BiVO4 photocatalyst synthesized via a polymer-assisted hydrothermal method. Res. Chem. Intermed. 39, 881–894, (2013).

    Google Scholar 

  13. S. Kumar, P.D. Sahare, Photocatalytic activity of bismuth vanadate for the degradation of organic compounds. Nano 8, p. 1350007, (2013).

    Google Scholar 

  14. Q. Wang, T. Niu, L. Wang, C. Yan, J. Huang, J. He, H. She, B. Su, Y. Bi, FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting. Chem. Eng. J. 337, 506–514, (2018).

    CAS  Google Scholar 

  15. Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, Z. Lei, Synthesis of MFe2O4 (M = Ni, Co)/BiVO4 film for photolectrochemical hydrogen production activity. Appl. Catal. B 214, 158–167, (2017).

    CAS  Google Scholar 

  16. H. She, P. Yue, X. Ma, J. Huang, L. Wang, Q. Wang, Fabrication of BiVO4 photoanode cocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation. Appl. Catal. B 263, p. 118280, (2020).

    CAS  Google Scholar 

  17. R. Ullah, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, Photocatalytic oxidation of water and air contaminants with metal doped BiTaO4 irradiated with visible light. Catal. Today 192, 203–212, (2012).

    CAS  Google Scholar 

  18. H. Wang, T. Wang, C. Weichang, J. Zhang, Photocatalytic properties of BiOX (X = Cl, Br, and I ). Rare Met. 27, 243–250, (2008).

    CAS  Google Scholar 

  19. A. Hiskia, A. Mylonas, E. Papaconstantinou, ChemInform abstract: comparison of the photoredox properties of polyoxometalates and semiconducting particles. Chem. Soc. Rev. 32, 62–69, (2001).

    Google Scholar 

  20. W. Wang, Q. Han, Z.J. Zhu, L.S. Zhang, S. Zhong, B.J. Liu, Enhanced photocatalytic degradation performance of organic contaminants by heterojunction photocatalyst BiVO4/TiO2/RGO and its compatibility on four different tetracycline antibiotics. Adv. Powder Technol. 30, 1882–1896, (2019).

    CAS  Google Scholar 

  21. Y.L. Wang, D. Yu, W. Wang, P. Gao, S. Zhong, L.S. Zhang, Q.Q. Zhao, B.J. Liu, Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity. Sep. Purif. Technol. 239, 116562, (2020).

    Google Scholar 

  22. S.H. Wu, Y. Hung, C.Y. Mou, Mesoporous silica nanoparticles as nanocarriers. Chem. Commun. 47, 9972–9985 (2011)

    CAS  Google Scholar 

  23. Y. Xiong, J.M. Mclellan, J. Chen, Y. Yin, Z.Y. Li, Y. Xia, Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J. Am. Chem. Soc. 127, 17118–17127, (2005).

    CAS  Google Scholar 

  24. Y.L. Wang, K. Ding, R. Xu, D. Yu, W. Wang, P. Gao, B.J. Liu, Fabrication of BiVO4/BiPO4/GO composite photocatalytic material for the visible light-driven degradation. J. Clean. Prod. 247, 119108, (2020).

    Google Scholar 

  25. J.M. Tian, Z.J. Zhu, B.J. Liu, Novel Bi2MoO6/Bi2WO6/MWCNTs photocatalyst with enhanced photocatalytic activity towards degradation of RB-19 under visible light irradiation. Colloid. Surface. A 581, 123798, (2019).

    Google Scholar 

  26. Y.L. Wang, D. Yu, W. Wang, P. Gao, L.S. Zhang, S. Zhong, B.J. Liu, The controllable synthesis of novel heterojunction CoO/BiVO4 composite catalysts for enhancing visible-light photocatalytic property. Colloid. Surface. A 578, 123608, (2019).

    CAS  Google Scholar 

  27. H. Yu, L. Jiang, H. Wang, B. Huang, X. Yuan, J. Huang, J. Zhang, G. Zeng, Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: a critical review. Small 15, p. 1901008, (2019).

    Google Scholar 

  28. H. Shi, J. Fan, Y. Zhao, X. Hu, X. Zhang, Z. Tang, Visible light driven CuBi2O4/Bi2MoO6 p-n heterojunction with enhanced photocatalytic inactivation of E. coli and mechanism insight. J. Hazard. Mater. 381, p. 121006, (2020).

    CAS  Google Scholar 

  29. Z. Li, S. Yang, J. Zhou, D. Li, X. Zhou, C. Ge, Y. Fang, Novel mesoporous g-C3 N4 and BiPO4 nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances. Chem. Eng. J. 241, 344–351, (2014).

    CAS  Google Scholar 

  30. S. Dong, Y. Cui, Y. Wang, Y. Li, L. Hu, J. Sun, J. Sun, Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater. Chem. Eng. J. 249, 102–110, (2014).

    CAS  Google Scholar 

  31. G. Tian, Y. Chen, W. Zhou, K. Pan, Y. Dong, C. Tian, H. Fu, Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts. J. Mater. Chem. 21, 887–892, (2010).

    Google Scholar 

  32. H. Li, C. Liu, K. Li, H. Wang, Preparation, characterization and photocatalytic properties of nanoplate Bi2 MoO6 catalysts. J. Mater. Sci. 43, 7026–7034, (2008).

    CAS  Google Scholar 

  33. X. Zhao, T. Xu, W. Yao, Y. Zhu, Photodegradation of dye pollutants catalyzed by γ-Bi2 MoO6 nanoplate under visible light irradiation. Appl. Surf. Sci. 255, 8036–8040, (2009).

    CAS  Google Scholar 

  34. L. Shi, L. Liang, F. Wang, J. Ma, J. Sun, Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst. Catal. Sci. Technol. 4, 207–209, (2014).

    Google Scholar 

  35. S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ. Sci. 8, 731–759, (2015).

    CAS  Google Scholar 

  36. Y. Zheng, L. Lin, B. Wang, X. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. 54, p. 12868, (2015).

    CAS  Google Scholar 

  37. J. Zhu, F. Fan, R. Chen, H. An, Z. Feng, C. Li, Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Chem. 54, p. 9111, (2015).

    CAS  Google Scholar 

  38. J. Bi, W. Fang, L. Li, X. Li, M. Liu, S. Liang, Z. Zhang, Y. He, H. Lin, L. Wu, Ternary reduced-graphene-oxide/Bi2 MoO6/Au nanocomposites withenhanced photocatalytic activity under visible light. J. Alloys Compd. 649, 28–34, (2015).

    CAS  Google Scholar 

  39. J. Bi, L. Wu, J. Li, Z. Li, X. Wang, X. Fu, Simple solvothermal routes to synthesize nanocrystalline BiMoO photocatalysts with different morphologies. Acta Mater. 55, 4699–4705 (2007)

    CAS  Google Scholar 

  40. H. Li, T. Hu, R. Zhang, J. Liu, W. Hou, Preparation of solid-state Z-scheme Bi2MoO6/MO (M Cu, Co3/4, or Ni) heterojunctions with internal electric field-improved performance in photocatalysis. Appl. Catal. B 188, 313–323, (2016).

    CAS  Google Scholar 

  41. J. Tian, P. Hao, N. Wei, H. Cui, H. Liu, 3D Bi2MoO6 nanosheet/TiO2 nanobelt heterostructure: enhanced photocatalytic activities and photoelectochemistry performance. Acs Catalysis 5, p. 150604120543005, (2015).

    Google Scholar 

  42. H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Synthesis and characterization of g-C 3 N4/Bi2 MoO6 heterojunctions with enhanced visible light photocatalytic activity. Key Eng. Mater. 575–576, 89–97, (2014).

    Google Scholar 

  43. T. Ma, J. Wu, Y. Mi, Q. Chen, D. Ma, C. Chai, Novel Z-scheme g-C 3 N4/C@Bi2 MoO6 composite with enhanced visible-light photocatalytic activity for β-naphthol degradation. Sep. Purif. Technol. 183, 54–65, (2017).

    CAS  Google Scholar 

  44. Z. Zhao, W. Zhang, Y. Sun, J. Yu, Y. Zhang, H. Wang, F. Dong, Z. Wu, Bi cocatalyst/Bi2MoO6 microspheres nanohybrid with SPR-promoted visible-light photocatalysis. J. Phys. Chem. C 120, 11889–11898, (2016).

    CAS  Google Scholar 

  45. T. Li, Y. He, H. Lin, J. Cai, L. Dong, X. Wang, M. Luo, L. Zhao, X. Yi, W. Weng, Synthesis, characterization and photocatalytic activity of visible-light plasmonic photocatalyst AgBr-SmVO4. Appl. Catal. B 138, 95–103, (2013).

    Google Scholar 

  46. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M.H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. 47, 7931–7933, (2008).

    CAS  Google Scholar 

  47. T. Yan, H. Zhang, Q. Luo, Y. Ma, H. Lin, J. You, Controllable synthesis of plasmonic Ag/AgBr photocatalysts by a facile one-pot solvothermal route. Chem. Eng. J. 232, 564–572, (2013).

    CAS  Google Scholar 

  48. C. Zeng, B. Tian, J. Zhang, Silver halide/silver iodide@silver composite with excellent visible light photocatalytic activity for methyl orange degradation. J. Coll. Interface Sci. 405, 17–21, (2013).

    CAS  Google Scholar 

  49. T. Yan, X. Yan, R. Guo, W. Zhang, W. Li, J. You, Ag/AgBr/BiOBr hollow hierarchical microspheres with enhanced activity and stability for RhB degradation under visible light irradiation. Catal. Commun. 42, 30–34, (2013).

    CAS  Google Scholar 

  50. Y. Yang, W. Guo, Y. Guo, Y. Zhao, X. Yuan, Y. Guo, Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity. J. Hazard. Mater. 271, 150–159, (2014).

    CAS  Google Scholar 

  51. L. Shi, L. Liang, J. Ma, Y. Meng, S. Zhong, F. Wang, J. Sun, Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B. Ceram. Int. 40, 3495–3502, (2014).

    CAS  Google Scholar 

  52. L. Zhang, K.H. Wong, Z. Chen, J.C. Yu, J. Zhao, C. Hu, C.Y. Chan, P.K. Wong, AgBr-Ag-Bi2WO6 nanojunction system: a novel and efficient photocatalyst with double visible-light active components. Appl. Catal. A 363, 221–229, (2009).

    CAS  Google Scholar 

  53. G. Tian, Y. Chen, J. Zhou, C. Tian, R. Li, C. Wang, Fu, growth of Bi MoO on reduced graphene oxide nanosheets for improved visible-light photocatalytic activity. Crystengcomm 16, 842–849, (2013).

    Google Scholar 

  54. C. An, J. Wang, W. Jiang, M. Zhang, X. Ming, S. Wang, Q. Zhang, Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2to methanol. Nanoscale 4, 5646–5650, (2012).

    CAS  Google Scholar 

  55. H. Tang, Y. Wang, D. Zhang, K. Wu, H. Huang, Shape-controllable synthesis and morphology-dependent photocatalytic properties of AgBr photocatalysts. J. Mater. Sci. Mate. Electr. 27, 6955–6963, (2016).

    CAS  Google Scholar 

  56. M. Zhang, C. Shao, J. Mu, X. Huang, Z. Zhang, Z. Guo, P. Zhang, Y. Liu, Hierarchical heterostructures of Bi2MoO6on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties. J. Mater. Chem. 22, 577–584, (2011).

    Google Scholar 

  57. H. Li, W. Hou, X. Tao, N. Du, Conjugated polyene-modified Bi2MO6 (MMo or W) for enhancing visible light photocatalytic activity. Appl. Catal. B 172–173, 27–36, (2015).

    Google Scholar 

  58. F. Cao, Q. Yang, C.L. Shao, C.J. Kong, J.J. Zheng, Y.F. Liu, C.Y. Wang, Bioactive 7-oxabicyclic[6.3.0]lactam and 12-membered macrolides from a gorgonian-derived Cladosporium sp. Fungus Mar. Drugs 13, 4171–4178, (2015).

    CAS  Google Scholar 

  59. L. Zhang, T. Xu, X. Zhao, Y. Zhu, Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl. Catal. B 98, 138–146, (2010).

    CAS  Google Scholar 

  60. Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J. Phys. Chem. B 110, 17790–17797, (2006).

    CAS  Google Scholar 

  61. D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, L. Gao, Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates. Nanoscale 4, 5431–5439, (2012).

    CAS  Google Scholar 

  62. S. Naraginti, Y.-Y. Yu, Z. Fang, Y.-C. Yong, Novel tetrahedral Ag3PO4@N-rGO for photocatalytic detoxification of sulfamethoxazole: process optimization, transformation pathways and biotoxicity assessment. Chem. Eng. J. 375, 122035, (2019).

    CAS  Google Scholar 

  63. C.H. Wu, C.Y. Kuo, J.T. Wu, M.J. Hsu, T.J. Jhang, Photodegradation of C.I. Reactive Red 2 in the Bi2 WO6 system: the determination of surface characteristics and photocatalytic activities of Bi2 WO6. Reaction Kinetics Mech. Catal. 117, 391–404, (2016).

    CAS  Google Scholar 

  64. R. Yang, F. Dong, X. You, M. Liu, S. Zhong, L. Zhang, B. Liu, Facile synthesis and characterization of interface charge transfer heterojunction of Bi2MoO6 modified by Ag/AgCl photosensitive material with enhanced photocatalytic activity. Mater. Lett. 252, 272–276, (2019).

    CAS  Google Scholar 

  65. R. Yang, S. Zhong, L. Zhang, B. Liu, PW12/CN@Bi2WO6 composite photocatalyst prepared based on organic-inorganic hybrid system for removing pollutants in water. Sep. Purif. Technol. 235, 116270, (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Open Project Program of Key Lab for Sport Shoes Upper Materials of Fujian Province (Fujian Huafeng New Material Co., Ltd.). Guangxi Innovation Drive Development Fund (AA17204076) and Donghua university graduate innovation fund (GSIF-DH-M-2020005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiangqiang Zhao or Baojiang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Zhao, Q. & Liu, B. Two-step method to prepare the direct Z-scheme heterojunction hierarchical flower-like Ag@AgBr/Bi2MoO6 microsphere photocatalysts for waste water treatment under visible light. J Mater Sci: Mater Electron 31, 5054–5067 (2020). https://doi.org/10.1007/s10854-020-03040-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03040-3

Navigation