Skip to main content
Log in

Radiation tolerance, charge trapping, and defect dynamics studies of ALD-grown Al/HfO2/Si nMOSCAPs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The radiation response, long-term performance, and reliability of HfO2-based gate dielectric materials play a critical role in metal oxide semiconductor (MOS) technology for space device applications. Al/HfO2/Si atomic layer-deposited devices were irradiated by gamma and swift heavy ions. An increase in the leakage current and charge trapping has been observed as the gamma irradiation dose varied from 25 to 100 krad. The density of oxide traps is found to increase with an increase in the gamma dose while the interface trap density is found to decrease. Another set of samples were irradiated by 120 MeV Au ions to study the SHI-induced defect annealing/creation of defects and intermixing effects in HfO2/Si-based devices. The formation of an interfacial layer of HfSiO at a fluence of at 5 × 1013 cm−2 is revealed by X-ray reflectivity analysis. The densities of interface- and oxide-trapped charges are found to decrease up to a critical fluence of 1 × 1012 cm−2 and then increase with further increase in fluence to 5 × 1013 cm−2. The presence of the interlayer, due to the swift heavy ion-induced intermixing, has been confirmed by X-ray photoelectron spectroscopy measurements. Various current conduction mechanisms in both substrate and gate injection cases were used to understand the basic mechanisms of direct, Fowler–Nordheim, and Poole–Frenkel tunneling, as well as Schottky emission in these devices. These studies elucidated the radiation tolerance and charge-trapping behavior of Al/HfO2/Si nMOS capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Felix, J. Schwank, D. Fleetwood, M. Shaneyfelt, E. Gusev, Microelectron. Reliab. 44, 563 (2004)

    CAS  Google Scholar 

  2. A.H. Johnston, IEEE Trans. Nucl. Sci. 45, 1339 (1998)

    CAS  Google Scholar 

  3. H. Jafari, S.A.H. Feghhi, S. Boorboor, Radiat. Meas. 73, 69 (2015)

    CAS  Google Scholar 

  4. Y. Mu, C.Z. Zhao, Q. Lu, C. Zhao, Y. Qi, S. Lam, I.Z. Mitrovic, S. Taylor, P.R. Chalker, IEEE Trans. Nucl. Sci. 64, 673 (2017)

    CAS  Google Scholar 

  5. P.V. Dressendorfer, J.M. Soden, J.J. Harrington, T.V. Nordstrom, IEEE Trans. Nucl. Sci. 28, 4281 (1981)

    Google Scholar 

  6. J.L. Barth, C.S. Dyer, E.G. Stassinopoulos, IEEE Trans. Nucl. Sci. 50, 466 (2003)

    CAS  Google Scholar 

  7. S. Hu, Y. Liu, T. Chen, Q. Guo, Y.-D. Li, X.-Y. Zhang, L.J. Deng, Q. Yu, Y. Yin, S. Hosaka, IEEE Trans. Nanotechnol. 17, 61 (2018)

    CAS  Google Scholar 

  8. M.R. Khan, M. Ishfaq, A. Ali, A.S. Bhatti, Mater. Sci. Semicond. Process. 68, 30 (2017)

    CAS  Google Scholar 

  9. R. Lok, S. Kaya, H. Karacali, E. Yilmaz, Radiat. Phys. Chem. 141, 155 (2017)

    CAS  Google Scholar 

  10. M. Dominguez-Pumar, C.R. Bheesayagari, S. Gorreta, G. Lopez-Rodriguez, J. Pons-Nin, IEEE Trans. Ind. Electron. 65, 2518 (2018)

    Google Scholar 

  11. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 87, 484 (2000)

    CAS  Google Scholar 

  12. K.J. Hubbard, D.G. Schlom, J. Mater. Res. 11, 2757 (1996)

    CAS  Google Scholar 

  13. M.L. Green, E.P. Gusev, R. Degraeve, E.L. Garfunkel, J. Appl. Phys. 90, 2057 (2001)

    CAS  Google Scholar 

  14. S. Campbell, T. Ma, R. Smith, W. Gladfelter, F. Chen, Microelectron. Eng. 59, 361 (2001)

    CAS  Google Scholar 

  15. L. Kang, B.H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, J.C. Lee, IEEE Electron Device Lett. 21, 181 (2000)

    CAS  Google Scholar 

  16. A. Das, S. Chattopadhyay, G.K. Dalapati, Adv. Mater. Lett. 7, 123 (2016)

    CAS  Google Scholar 

  17. N. Manikanthababu, S. Vajandar, N. Arun, A.P. Pathak, K. Asokan, T. Osipowicz, T. Basu, S.V.S. Nageswara Rao, Appl. Phys. Lett. 112, 131601 (2018)

    Google Scholar 

  18. Y. Wang, Z. Lin, X. Cheng, H. Xiao, F. Zhang, S. Zou, Appl. Surf. Sci. 228, 93 (2004)

    CAS  Google Scholar 

  19. P.M. Tirmali, A.G. Khairnar, B.N. Joshi, A.M. Mahajan, Solid State Electron. 62, 44 (2011)

    CAS  Google Scholar 

  20. L. Pereira, A. Marques, H. Águas, N. Nedev, S. Georgiev, E. Fortunato, R. Martins, Mater. Sci. Eng. B 109, 89 (2004)

    Google Scholar 

  21. K.C. Das, S.P. Ghosh, N. Tripathy, G. Bose, A. Ashok, P. Pal, D.H. Kim, T.I. Lee, J.M. Myoung, J.P. Kar, J. Mater. Sci. Mater. Electron. 26, 6025 (2015)

    CAS  Google Scholar 

  22. H. Kim, P.C. McIntyre, K.C. Saraswat, Appl. Phys. Lett. 82, 106 (2003)

    CAS  Google Scholar 

  23. S.M. George, Chem. Rev. 110, 111 (2010)

    CAS  Google Scholar 

  24. D.M. Hausmann, R.G. Gordon, J. Cryst. Growth 249, 251 (2003)

    CAS  Google Scholar 

  25. L. Khomenkova, C. Dufour, P.-E. Coulon, C. Bonafos, F. Gourbilleau, Nanotechnology 21, 095704 (2010)

    CAS  Google Scholar 

  26. N. Manikanthababu, T.K. Chan, A.P. Pathak, G. Devaraju, N. Srinivasa Rao, P. Yang, M.B.H. Breese, T. Osipowicz, S.V.S. Nageswara Rao, Nucl. Instrum. Methods Phys. Res. 332, 389 (2014)

    CAS  Google Scholar 

  27. N. Manikanthababu, N. Arun, M. Dhanunjaya, V. Saikiran, S.V.S. Nageswara Rao, A.P. Pathak, Radiat. Eff. Defects Solids 170, 207 (2015)

    CAS  Google Scholar 

  28. N. Manikanthababu, N. Arun, M. Dhanunjaya, S.V.S. Nageswara Rao, A.P. Pathak, Radiat. Eff. Defects Solids 171, 77 (2016)

    CAS  Google Scholar 

  29. N. Manikanthababu, M. Dhanunjaya, S.V.S. Nageswara Rao, A.P. Pathak, Nucl. Instrum. Methods Phys. Res. 379, 230 (2016)

    CAS  Google Scholar 

  30. N. Manikanthababu, T.K. Chan, S. Vajandar, V. Saikiran, A.P. Pathak, T. Osipowicz, S.V.S.N. Rao, Appl. Phys. A 123, 303 (2017)

    Google Scholar 

  31. S. Kaya, A. Jaksic, E. Yilmaz, Radiat. Phys. Chem. 149, 7 (2018)

    CAS  Google Scholar 

  32. C.Z. Zhao, S. Taylor, M. Werner, P.R. Chalker, R.J. Potter, J.M. Gaskell, A.C. Jones, J. Vac. Sci. Technol. B 27, 411 (2009)

    CAS  Google Scholar 

  33. A. Stesmans, V. V. Afanas’ev, F. Chen, S. A. Campbell, Appl. Phys. Lett. 84, 4574 (2004)

    CAS  Google Scholar 

  34. D.K. Avasthi, Def. Sci. J. 59, 401 (2009)

    CAS  Google Scholar 

  35. S.K. Srivastava, S.A. Khan, P. SudheerBabu, D.K. Avasthi, Nucl. Instrum. Methods Phys. Res. 332, 377 (2014)

    CAS  Google Scholar 

  36. H. Amekura, S. Mohapatra, U.B. Singh, S.A. Khan, P.K. Kulriya, N. Ishikawa, N. Okubo, D.K. Avasthi, Nanotechnology 25, 435301 (2014)

    CAS  Google Scholar 

  37. S. Verma, K.C. Praveen, A. Bobby, D. Kanjilal, IEEE Trans. Device Mater. Reliab. 14, 721 (2014)

    CAS  Google Scholar 

  38. A. Kumar, A. Hähnel, D. Kanjilal, R. Singh, Appl. Phys. Lett. 101, 153508 (2012)

    Google Scholar 

  39. A. Kumar, T. Kumar, A. Hähnel, D. Kanjilal, R. Singh, Appl. Phys. Lett. 104, 033507 (2014)

    Google Scholar 

  40. A. Kumar, J. Dhillon, S. Verma, P. Kumar, K. Asokan, D. Kanjilal, Semicond. Sci. Technol. 33, 085008 (2018)

    Google Scholar 

  41. A. Bobby, N. Shiwakoti, P.M. Sarun, S. Verma, K. Asokan, B.K. Antony, Curr. Appl. Phys. 15, 1500 (2015)

    Google Scholar 

  42. G. Lucovsky, D.M. Fleetwood, S. Lee, H. Seo, R.D. Schrimpf, J.A. Felix, J. Lning, L.B. Fleming, M. Ulrich, D.E. Aspnes, IEEE Trans. Nucl. Sci. 53, 3644 (2006)

    CAS  Google Scholar 

  43. V.S. Vendamani, Z.Y. Dang, P. Ramana, A.P. Pathak, V.V. RaviKanthKumar, M.B.H. Breese, S.V.S. Nageswara Rao, Nucl. Instrum. Methods Phys. Res. 358, 105 (2015)

    CAS  Google Scholar 

  44. N. Fairley, A. Carrick, J. Walton, P. Wincott, Peak Fitting with CasaXPS (Accolyte Science, Knutsford, 2010)

    Google Scholar 

  45. G.P. Summers, E.A. Burke, P. Shapiro, S.R. Messenger, R.J. Walters, IEEE Trans. Nucl. Sci. 40, 1372 (1993)

    CAS  Google Scholar 

  46. J.H. Cahn, J. Appl. Phys. 30, 1310 (1959)

    CAS  Google Scholar 

  47. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. 268, 1818 (2010)

    CAS  Google Scholar 

  48. S. Daniel, Study of the degradation process of polyimide induced by high energetic ion irradiation, Universität Marburg (2008)

  49. Y. Seo, S. Lee, I. An, C. Song, H. Jeong, Semicond. Sci. Technol. 24, 115016 (2009)

    Google Scholar 

  50. H. Wang, Y. Wang, J. Zhang, C. Ye, H.B. Wang, J. Feng, B.Y. Wang, Q. Li, Y. Jiang, Appl. Phys. Lett. 93, 202904 (2008)

    Google Scholar 

  51. K.Y. Cheong, J.H. Moon, H.J. Kim, W. Bahng, N.-K. Kim, J. Appl. Phys. 103, 084113 (2008)

    Google Scholar 

  52. A. Paskaleva, A.J. Bauer, M. Lemberger, S. Zürcher, J. Appl. Phys. 95, 5583 (2004)

    CAS  Google Scholar 

  53. Y. Wang, H. Wang, C. Ye, J. Zhang, H. Wang, Y. Jiang, A.C.S. Appl, Mater. Interfaces 3, 3813 (2011)

    CAS  Google Scholar 

  54. E. Yilmaz, B. Kaleli, R. Turan, Nucl. Instrum. Methods Phys. Res. 264, 287 (2007)

    CAS  Google Scholar 

  55. S. Kaya, E. Yilmaz, J. Radioanal. Nucl. Chem. 302, 425 (2014)

    CAS  Google Scholar 

  56. J.L. Gavartin, D. MuñozRamo, A.L. Shluger, G. Bersuker, B.H. Lee, Appl. Phys. Lett. 89, 082908 (2006)

    Google Scholar 

  57. A. Benyagoub, Phys. Rev. B 72, 094114 (2005)

    Google Scholar 

  58. M. Dhanunjaya, D.K. Avasthi, A.P. Pathak, S.A. Khan, S.V.S. Nageswara Rao, Appl. Phys. A 124, 587 (2018)

    Google Scholar 

  59. D.C. Agarwal, F. Singh, D. Kabiraj, S. Sen, P.K. Kulariya, I. Sulania, S. Nozaki, R.S. Chauhan, D.K. Avasthi, J. Phys. D. Appl. Phys. 41, 045305 (2008)

    Google Scholar 

  60. Y. Zhang, R. Sachan, O.H. Pakarinen, M.F. Chisholm, P. Liu, H. Xue, W.J. Weber, Nat. Commun. 6, 8049 (2015)

    CAS  Google Scholar 

  61. J.C. Ranuárez, M.J. Deen, C.-H. Chen, Microelectron. Reliab. 46, 1939 (2006)

    Google Scholar 

  62. R.G. Southwick, W.B. Knowlton, IEEE Trans. Device Mater. Reliab. 6, 136 (2006)

    CAS  Google Scholar 

  63. S.U. Sharath, T. Bertaud, J. Kurian, E. Hildebrandt, C. Walczyk, P. Calka, P. Zaumseil, M. Sowinska, D. Walczyk, A. Gloskovskii, T. Schroeder, L. Alff, Appl. Phys. Lett. 104, 063502 (2014)

    Google Scholar 

  64. J.W. Zhang, G. He, M. Liu, H.S. Chen, Y.M. Liu, Z.Q. Sun, X.S. Chen, Appl. Surf. Sci. 346, 489 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Vinayak Vats, Aixtron Inc., USA, for providing the samples. NMB thanks SERB for fellowship through NPDF scheme (PDF/2016/000748). The financial support and the access to national experimental facilities through collaborative research projects by IUAC, New Delhi, and UGC-DAE-CSR, Kolkata, are greatly appreciated. We thank CFN and UoH for providing access to necessary experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Manikanthababu or A. P. Pathak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikanthababu, N., Basu, T., Vajandar, S. et al. Radiation tolerance, charge trapping, and defect dynamics studies of ALD-grown Al/HfO2/Si nMOSCAPs. J Mater Sci: Mater Electron 31, 3312–3322 (2020). https://doi.org/10.1007/s10854-020-02879-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02879-w

Navigation