Skip to main content
Log in

Electrical Characterization of Defects Created by γ-Radiation in HfO2-Based MIS Structures for RRAM Applications

  • Topical Collection: 17th Conference on Defects (DRIP XVII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The γ-radiation effects on the electrical characteristics of metal–insulator-semiconductor capacitors based on HfO2, and on the resistive switching characteristics of the structures have been studied. The HfO2 was grown directly on silicon substrates by atomic layer deposition. Some of the capacitors were submitted to a γ ray irradiation using three different doses (16 kGy, 96 kGy and 386 kGy). We studied the electrical characteristics in the pristine state of the capacitors. The radiation increased the interfacial state densities at the insulator/semiconductor interface, and the slow traps inside the insulator near the interface. However, the leakage current is not increased by the irradiation, and the conduction mechanism is Poole–Frenkel for all the samples. The switching characteristics were also studied, and no significant differences were obtained in the performance of the devices after having been irradiated, indicating that the fabricated capacitors present good radiation hardness for its use as a RS element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Manikanthababu, N. Arun, M. Dhanunjaya, V. Saikiran, S.V.S. Nageswara Rao, and A.P. Pathak, Radiat. Eff. Defects Solids 170, 207 (2015).

  2. R.A.B. Devine, T. Busani, M. Quevedo-Lopez, and H.N. Alshareef, J. Appl. Phys. 101, 104101 (2007).

    Article  Google Scholar 

  3. D.K. Chen, R.D. Shrimpf, D.M. Fleetwood, K.F. Galloway, S.T. Pantelides, A. Dimoulas, G. Mavrou, A. Sotiropoulos, and Y. Panayiotatos, IEEE Trans. Nucl. Sci. 54, 971 (2007).

    Article  Google Scholar 

  4. V.V. Afanas’ev and A. Stesmans, J. Appl. Phys. 95, 2518 (2004).

    Article  Google Scholar 

  5. S. Maurya, J. Matter. Sci.-Mater. Electron. 27, 12796 (2016).

    Article  Google Scholar 

  6. I. Tascioglu, A. Tataroglu, A. Ozbay, and S. Altindal, Radiat. Phys. Chem. 79, 457 (2010).

    Article  Google Scholar 

  7. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).

    Article  Google Scholar 

  8. T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-J. Chu, and S.M. Sze, Mater. Today 19, 254 (2016).

    Article  Google Scholar 

  9. D.C. Kim, S. Seo, S.E. Ahn, D.-S. Shu, M.J. Lee, B.-H. Park, I.K. Yoo, I.G. Baek, H.-J. Kim, R.K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U.-I. Chung, J.T. Moon, and B.I. Ryu, Appl. Phys. Lett. 88, 202102 (2006).

    Article  Google Scholar 

  10. T.-Y. Huang, F.-C. Hong, T.-S. Chao, H.-C. Lin, L.-Y. Leu, K. Young, C.-H. Lin, and K.Y. Chiu, IEEE Trans. Nucl. Sci. 19, 256 (1998).

    Google Scholar 

  11. K. Agashe, N. Sarwade, S. Joshi, M. Thakurdesai, S. Surwase, P. Tirmali, and A. Asokan, Nucl. Instrum. Methods Phys. Res. B 403, 38 (2017).

    Article  Google Scholar 

  12. W. Duan, J. Wang, and X. Zhong, Europhys. Lett. 119, 27003 (2017).

    Article  Google Scholar 

  13. S.-H. Lin, Y.-L. Wu, Y.-H. Hwang, and J.-J. Lin, Microelectron. Reliab. 55, 2224 (2015).

    Article  Google Scholar 

  14. R. Fang, Y. Gonzalez Velo, W. Chen, K.E. Holbert, M.N. Kozicki, H. Barnaby, and S. Yu, Appl. Phys. Lett. 104, 183507 (2014).

    Article  Google Scholar 

  15. S. Li, L. Han, and Z. Chen, J. Electrochem. Soc. 157, G221 (2010).

    Article  Google Scholar 

  16. S.A. Campbell, K.H. Lee, H.H. Li, R. Nachman, and F. Cerrina, Appl. Phys. Lett. 63, 1646 (1993).

    Article  Google Scholar 

  17. V. Singh, N. Shashank, S.K. Sharma, R.S. Shekhawat, D. Kumar, and R.K. Nahar, Nucl. Instrum. Methods Phys. Res. B 269, 2765 (2011).

    Article  Google Scholar 

  18. S. Maruya, in AIP conference Proceedings vol. 1731 (2016), pp. 120034 (1–3).

  19. C.W. Wang, S.F. Chen, and G.T. Chen, J. Appl. Phys. 91, 9198 (2002).

    Article  Google Scholar 

  20. L. He, H. Hasegawa, T. Sawada, and H. Ohno, J. Appl. Phys. 63, 2120 (1988).

    Article  Google Scholar 

  21. H. García, S. Castán, L. Dueñas, F. Bailón, J.M. Campabadal, M. Rafi, O. Zabala, H. Beldarrain, K.Takakura Ohyama, and I. Tsunoda, Thin Solid Films 534, 482 (2013).

    Article  Google Scholar 

  22. H. García, S. Dueñas, H. Castán, A. Gómez, L. Bailón, R. Barquero, K. Kukli, M. Ritala, and M. Leskelä, J. Vac. Sci. Technol. B 27, 416 (2009).

    Article  Google Scholar 

  23. S. Dueñas, H. Castán, H. García, A. Gómez, L. Bailón, M. Toledano-Luque, I. Mártil, and G. González-Díaz, Semicond. Sci. Technol. 22, 1344 (2007).

    Article  Google Scholar 

  24. O. Mitrofanov and M. Manfra, J. Appl. Phys. 95, 6414 (2004).

    Article  Google Scholar 

  25. C. Vaca, M.B. González, H. Castán, H. García, S. Dueñas, F. Campabadal, E. Miranda, and L. Bailón, IEEE Trans. Electron Dev. 63, 1877 (2016).

    Article  Google Scholar 

  26. K.L. Lin, T.H. Hou, J. Shieh, J.H. Lin, C.T. Chou, and Y.J. Lee, J. Appl. Phys. 109, 084104 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, H., González, M.B., Mallol, M.M. et al. Electrical Characterization of Defects Created by γ-Radiation in HfO2-Based MIS Structures for RRAM Applications. J. Electron. Mater. 47, 5013–5018 (2018). https://doi.org/10.1007/s11664-018-6257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6257-y

Keywords

Navigation