Skip to main content
Log in

Graphene oxide–silver nanocomposite SERS substrate for sensitive detection of nitro explosives

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here, we carried out the sensing of nitro amine explosives through surface-enhanced Raman scattering (SERS) employing silver nanoparticle (Ag NP)-decorated reduced graphene oxide (rGO) nanocomposite substrate. In situ reduction process has been utilized to prepare the reduced graphene oxide–silver nanocomposite. The areal distribution and structural properties of Ag NPs have been studied. The fabricated nanocomposite was characterized using microscopic, spectroscopic and thermogravimetric methods. Moreover, the electrochemical properties of rGO–Ag nanocomposites were analysed using electrochemical methods. Raman spectra show the enhancement in the Raman signal of rGO-decorated Ag NPs with an intensity enhancement factor of 12.5 for D peak and 9 for G peak. The Ag NP-enriched rGO has also demonstrated strong SERS activity towards the detection of cyclotetramethylene tetranitramine and cyclotrimethylenetrinitramine up to 10−12 M as the limit of detection with SERS enhancement of 109. Thus, the synthesized nanocomposite shows potential applications for sensing of explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.H. Chung, S.G. Cho, Bull. Korean Chem. Soc. 35, 3547–3552 (2014)

    Article  CAS  Google Scholar 

  2. D. Gopalakrishnan, W.R. Dichtel, J. Am. Chem. Soc. 135, 8357–8362 (2013)

    Article  CAS  Google Scholar 

  3. R. Kanchanapally, S.S. Sinha, Z. Fan, M. Dubey, E. Zakar, P.C. Ray, J. Phys. Chem. C 118, 7070–7075 (2014)

    Article  CAS  Google Scholar 

  4. Z.Q. Tian, B. Ren, J.F. Li, Z.L. Yang, Chem. Commun. 34, 3514–3534 (2007)

    Article  Google Scholar 

  5. Z. Fan, R. Kanchanapally, P.C. Ray, J. Phys. Chem. Lett. 4, 3813–3818 (2013)

    Article  CAS  Google Scholar 

  6. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163–166 (1974)

    Article  CAS  Google Scholar 

  7. D.L. Jeanmaire, R.P. VAN Duyne, J. Electroanal. Chem. 84, 1 (1977)

    Article  CAS  Google Scholar 

  8. M.G. Albrecht, J.A. Creighton, J. Am. Chem. Soc. 99, 5215–5217 (1977)

    Article  CAS  Google Scholar 

  9. K.M. Kosuda, J.M. Bingham, K.L. Wustholz, R.P. Van Duyne, Compr. Nanosci. Technol. 1–5, 263–301 (2010)

    Google Scholar 

  10. L. Guerrini, D. Graham, Chem. Soc. Rev. 41, 7085–7107 (2012)

    Article  CAS  Google Scholar 

  11. A. Silver, H. Kitadai, H. Liu, T. Granzier-Nakajima, M. Terrones, X. Ling, S. Huang, Nanomaterials 9, 1 (2019)

    Article  Google Scholar 

  12. A.F. Girão, M.C. Serrano, A. Completo, P.A. Marques, Biomater. Sci. 7, 1228–1239 (2019)

    Article  Google Scholar 

  13. A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Nano Mater. Sci. 1, 31 (2019)

    Article  Google Scholar 

  14. H. Zheng, D. Ni, Z. Yu, P. Liang, Food Chem. 217, 511–516 (2017)

    Article  CAS  Google Scholar 

  15. W. Zhang, L. Jiang, J.A. Piper, Y. Wang, J Anal. Test. 2, 26–44 (2018)

    Article  Google Scholar 

  16. P.V. Shanta, Q. Cheng, ACS Sens 2, 817–827 (2017)

    Article  CAS  Google Scholar 

  17. K. Karthikeyan, R. Mohan, S.J. Kim, Appl. Phys. Lett. 98, 244101 (2011)

    Article  Google Scholar 

  18. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Compos. B 167, 643 (2019)

    Article  CAS  Google Scholar 

  19. S. Zinatloo-Ajabshir, M. Salavati-Niasari, A. Sobhani, Z. Zinatloo-Ajabshir, J. Alloys Compd. 767, 1164 (2018)

    Article  CAS  Google Scholar 

  20. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, J. Environ. Manage. 233, 107 (2019)

    Article  CAS  Google Scholar 

  21. T.K. Naqvi, M. Sree Satya Bharati, A.K. Srivastava, M.M. Kulkarni, A.M. Siddiqui, S.V. Rao, P.K. Dwivedi, ACS Omega (2019). https://doi.org/10.1021/acsomega.9b01975

    Article  Google Scholar 

  22. Q. Zhang, D. Zhang, Y. Lu, Y. Yao, S. Li, Q. Liu, Biosens. Bioelectron. 68, 494–499 (2015)

    Article  CAS  Google Scholar 

  23. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  24. Bharti, I. Khurana, A.K. Shaw, A. Saxena, J.M. Khurana, P.K. Rai, Water Air Soil Pollut. (2018). https://doi.org/10.1007/s11270-017-3664-2

    Article  Google Scholar 

  25. S.N. Alam, N. Sharma, L. Kumar, Graphene 06, 1–18 (2017)

    Article  CAS  Google Scholar 

  26. C. Xu, X. Wang, Small 5, 2212–2217 (2009)

    Article  CAS  Google Scholar 

  27. A.C. Ferrari, Solid State Commun. 143, 47–57 (2007)

    Article  CAS  Google Scholar 

  28. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. 473, 51–87 (2009)

    Article  CAS  Google Scholar 

  29. J. Ju, W. Liu, C.M. Perlaki, K. Chen, C. Feng, Q. Liu, Sci. Rep. 7, 1–11 (2017)

    Article  Google Scholar 

  30. P. Chettri, V.S. Vendamani, A. Tripathi, M.K. Singh, A.P. Pathak, A. Tiwari, Appl. Surf. Sci. 406, 312–318 (2017)

    Article  CAS  Google Scholar 

  31. D. Hou, Q. Liu, X. Wang, Y. Quan, Z. Qiao, L. Yu, S. Ding, J. Materiomics 4, 256–265 (2018)

    Article  Google Scholar 

  32. C.H. Chuang, Y.F. Wang, Y.C. Shao, Y.C. Yeh, D.Y. Wang, C.W. Chen, J.W. Chiou, S.C. Ray, W.F. Pong, L. Zhang, J.F. Zhu, J.H. Guo, Sci. Rep. 4, 1–7 (2014)

    Google Scholar 

  33. S. Sang, D. Li, H. Zhang, Y. Sun, A. Jian, RSC Adv. 7, 21618 (2017)

    Article  CAS  Google Scholar 

  34. Y.T. Yew, A. Ambrosi, M. Pumera, Sci. Rep. 6, 33276 (2016)

    Article  CAS  Google Scholar 

  35. S.S.B. Moram, C. Byram, S.N. Shibu, B.M. Chilukamarri, V.R. Soma, ACS Omega 3, 8190 (2018)

    Article  CAS  Google Scholar 

  36. J. Zhao, H. Lui, D.I. Mclean, H. Zeng, Appl. Spectrosc. 61, 1225–1232 (2007)

    Article  CAS  Google Scholar 

  37. L. Mehrvar, M. Sadeghipari, S.H. Tavassoli, S. Mohajerzadeh, M. Fathipour, Sci. Rep. 7, 1–13 (2017)

    Article  CAS  Google Scholar 

  38. G. Xiao, Y. Li, W. Shi, L. Shen, Q. Chen, L. Huang, Appl. Surf. Sci. 404, 334–341 (2017)

    Article  CAS  Google Scholar 

  39. Z. Fan, T. Wu, X. Xu, Sci. Rep. 7, 1–15 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors (PG and RR) acknowledge the support from the Director of Solid-State Physics Laboratory (SSPL) for her motivation and giving permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Garg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, P., Bharti, Soni, R.K. et al. Graphene oxide–silver nanocomposite SERS substrate for sensitive detection of nitro explosives. J Mater Sci: Mater Electron 31, 1094–1104 (2020). https://doi.org/10.1007/s10854-019-02621-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02621-1

Navigation