Skip to main content
Log in

Preparation and Electrocatalytic Properties of Polydopamine Functionalized Reduced Graphene Oxide-Silver Nanocomposites

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Polydopamine functionalized reduced graphene oxide-silver nanoparticle (PDA-RGO/Ag NP) nanocomposites were successfully prepared by a simple and mild procedure. Graphene oxide (GO) sheets were firstly coated with PDA via a self-polymerization process which provided an excellent interface for in-situ growing silver nanoparticles. Fourier transform infrared spectroscopy (FTIR) confirmed the successful coating of PDA and informed the reduction of the surface functional groups of GO. The formation of reduced GO and silver NPs was further evidenced by UV-Vis and X-ray diffraction spectroscopy. The as-prepared PDA-RGO/Ag nanocomposites could greatly enhance the electrochemical reduction of hydrogen peroxide (H2O2). This excellent performance was attributed to the increased effective electrode surface area due to the deposition of nano-sized Ag particles and graphene. The PDA-RGO/Ag-based electrochemical sensor displayed a rapid amperometric response for H2O2 measurement with a wide linear range from 0.5 μM to 8 mM and a low detection limit of 2.07 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Abo, Y. Urano, K. Hanaoka, T. Terai, T. Komatsu, T. Nagano, Development of a highly sensitive fluorescence probe for hydrogen peroxide. J. Am. Chem. Soc. 133, 10629 (2011)

    Article  CAS  Google Scholar 

  2. T. Jiao, B.D. Leca-Bouvier, P. Boullanger, L.J. Blum, A.P. Girard-Egrot, Electrochemiluminescent detection of hydrogen peroxide using amphiphilic luminol derivatives in solution. Colloids Surf. A. 321, 143 (2008)

    Article  CAS  Google Scholar 

  3. A.C. Pappas, C.D. Stalikas, Y.C. Fiamegos, M.I. Karayannis, Determination of hydrogen peroxide by using a flow injection system with immobilized peroxidase and long pathlength capillary spectrophotometry. Anal. Chim. Acta 455, 305 (2002)

    Article  CAS  Google Scholar 

  4. A. Yu, Q. Wang, J. Yong, P.J. Mahon, F. Malherbe, F. Wang, Silver nanoparticle–carbon nanotube hybrid films: preparation and electrochemical sensing. Electrochim. Acta 74, 111 (2012)

    Article  CAS  Google Scholar 

  5. D. Lu, Y. Zhang, S. Lin, L. Wang, C. Wang, Synthesis of PtAu bimetallic nanoparticles on graphene–carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor. Talanta 112, 111 (2013)

    Article  CAS  Google Scholar 

  6. J.H. Yang, K. Zhang, D. Zhang, Gourd-shaped silver nanoparticle–graphene composite for electrochemical oxidation of glucose. Mater. Lett. 97, 133 (2013)

    Article  CAS  Google Scholar 

  7. A. Yu, Carbon nanotube­polypyrrole hybrid films as potentiometric peroxide biosensors. Chem. Lett. 41(1492) (2012)

  8. G.A. Moradi, N.M. Huang, H.N. Lim, R. Zakaria, C.Y. Yin, One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon 62(405) (2013)

  9. M.R. Guascito, D. Chirizzi, R.A. Picca, E. Mazzotta, C. Malitesta, Ag nanoparticles capped by a nontoxic polymer: electrochemical and spectroscopic characterization of a novel nanomaterial for glucose detection. Mater. Sci. Eng., C 31, 606 (2011)

    Article  CAS  Google Scholar 

  10. Z. Zhang, J. Zhang, B. Zhang, J. Tang, Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials. Nanoscale 5, 118 (2013)

    Article  Google Scholar 

  11. H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426 (2007)

    Article  CAS  Google Scholar 

  12. L. Zheng, L. Xiong, Y. Li, J. Xu, X. Kang, Z. Zou, Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol. Sens. Actuators, B 177, 344 (2013)

    Article  CAS  Google Scholar 

  13. R.A. Zangmeister, T.A. Morris, M.J. Tarlov, Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 29, 8619 (2013)

    Article  CAS  Google Scholar 

  14. Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, P.K. Loh, Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21, 2950 (2009)

    Article  CAS  Google Scholar 

  15. M.Y. Wang, T. Shen, M. Wang, D. Zhang, J. Chen, One-pot green synthesis of Ag nanoparticles-decorated reduced graphene oxide for efficient nonenzymatic H2O2 biosensor. Mater. Lett. 107, 311 (2013)

    Article  CAS  Google Scholar 

  16. A. Bello, M. Fabiane, A.D. Dodoo, K.I. Ozoemena, N. Manyala, Silver nanoparticles decorated on a three-dimensional graphene scaffold for electrochemical applications. J. Phys. Chem. Solid 75, 109 (2014)

    Article  CAS  Google Scholar 

  17. K.J. Huang, L. Wang, J. Li, M. Yu, Y.M. Liu, Electrochemical sensing of catechol using a glassy carbon electrode modified with a composite made from silver nanoparticles, polydopamine, and graphene. Microchim. Acta 180, 751 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L Fu acknowledges the Swinburne University Postgraduate Research Award (SUPRA) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Lai, G., Jia, B. et al. Preparation and Electrocatalytic Properties of Polydopamine Functionalized Reduced Graphene Oxide-Silver Nanocomposites. Electrocatalysis 6, 72–76 (2015). https://doi.org/10.1007/s12678-014-0219-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0219-9

Keywords

Navigation