Skip to main content
Log in

Resistive switching memory utilizing water and titanium dioxide thin film Schottky diode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Colorless and odorless water is an important liquid element to all life on earth. In this paper, a novel resistive switching device is presented by applying a water (H2O) on titanium dioxide (TiO2) thin film based Schottky diode. The Ag electrodes are fabricated with screen printer and the TiO2 film are fabricated through a spin coater. The polydimethylsiloxane mold with holes is engineered to lock water. Applying dual voltage sweep of ± 5 V, it exhibits high resistance state of 120.6 kΩ and low resistance state of 9.4 kΩ with 100 endurance cycles, and it is stably and consistently operated for long retention tome of 104 s with Roff/Ron ratio of 12.82. From the results, we can say that liquid based materials can be used to fabricate resistive memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Chua, Memristor: the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429 (2008)

    Article  CAS  Google Scholar 

  3. S. Gao, C. Song, C. Chen, F. Zeng, F. Pan, Dynamic processes of resistive switching in metallic filament-based organic memory devices. J. Phys. Chem. C 116, 17955–17959 (2012)

    Article  CAS  Google Scholar 

  4. A. Wu, S. Wen, Z. Zeng, Synchronization control of a class of memristor-based recurrent neural networks. Inf. Sci. 183, 106–116 (2012)

    Article  Google Scholar 

  5. C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila, C.E. Graves, Z. Li, J.P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R.S. Williams, J.J. Yang, Q. Xia, Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018)

    Article  Google Scholar 

  6. T.D. Dongale, K.P. Patil, S.R. Vanjare, A.R. Chavan, P.K. Gaikwad, R.K. Kamat, Modelling of nanostructured memristor device characteristics using artificial neural network (ANN). J. Comput. Sci. 11, 82–90 (2015)

    Article  Google Scholar 

  7. C.L. He, F. Zhuge, X.F. Zhou, M. Li, G.C. Zhou, Y.W. Liu, J.Z. Wang, B. Chen, W.J. Su, Z.P. Liu, Y.H. Wu, P. Cui, R.-W. Li, Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95, 232101 (2009)

    Article  Google Scholar 

  8. G. Hassan, S. Ali, J. Bae, C.H. Lee, Flexible resistive switching device based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/poly(4-vinylphenol) (PVP) composite and methyl red heterojunction. Appl. Phys. A 123, 256 (2017)

    Article  Google Scholar 

  9. M.U. Khan, G. Hassan, M.A. Raza, J. Bae, Bipolar resistive switching device based on N, N′-bis(3-methylphenyl)-N, N′-diphenylbenzidine and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/poly(vinyl alcohol) bilayer stacked structure. Appl. Phys. A 124, 726 (2018)

    Article  Google Scholar 

  10. S. Ali, J. Bae, C.H. Lee, Printed non-volatile resistive switches based on zinc stannate (ZnSnO3). Curr. Appl. Phys. 16, 757–762 (2016)

    Article  Google Scholar 

  11. K.-D. Liang, C.-H. Huang, C.-C. Lai, J.-S. Huang, H.-W. Tsai, Y.-C. Wang, Y.-C. Shih, M.-T. Chang, S.-C. Lo, Y.-L. Chueh, Single CuOx nanowire memristor: forming-free resistive switching behavior. ACS Appl. Mater. Interfaces 6, 16537–16544 (2014)

    Article  CAS  Google Scholar 

  12. W. Wang, G.N. Panin, X. Fu, L. Zhang, P. Ilanchezhiyan, V.O. Pelenovich, D. Fu, T.W. Kang, MoS2 memristor with photoresistive switching. Sci. Rep. 6, 31224 (2016)

    Article  CAS  Google Scholar 

  13. M.U. Khan, G. Hassan, M.A. Raza, J. Bae, N.P. Kobayashi, Schottky diode based resistive switching device based on ZnO/PEDOT:PSS heterojunction to reduce sneak current problem. J. Mater. Sci. 30, 4607–4617 (2019)

    CAS  Google Scholar 

  14. G. Hassan, M.U. Khan, J. Bae, Solution-processed flexible non-volatile resistive switching device based on poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)]: polyvinylpyrrolidone composite and its conduction mechanism. Appl. Phys. A 125, 18 (2018)

    Article  Google Scholar 

  15. H.-J. Koo, J.-H. So, M.D. Dickey, O.D. Velev, Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics. Adv. Mater. 23, 3559–3564 (2011)

    Article  CAS  Google Scholar 

  16. Q. Sheng, Y. Xie, J. Li, X. Wang, J. Xue, Transporting an ionic-liquid/water mixture in a conical nanochannel: a nanofluidic memristor. Chem. Commun. 53, 6125–6127 (2017)

    Article  CAS  Google Scholar 

  17. J.-S. Park, J.K. Jeong, H.-J. Chung, Y.-G. Mo, H.D. Kim, Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl. Phys. Lett. 92, 072104 (2008)

    Article  Google Scholar 

  18. D.E. Yates, S. Levine, T.W. Healy, Site-binding model of the electrical double layer at the oxide/water interface. J Chem Soc 70, 1807–1818 (1974)

    CAS  Google Scholar 

  19. S. Tappertzhofen, I. Valov, T. Tsuruoka, T. Hasegawa, R. Waser, M. Aono, Generic relevance of counter charges for cation-based nanoscale resistive switching memories. ACS Nano 7, 6396–6402 (2013)

    Article  CAS  Google Scholar 

  20. T. Tsuruoka, K. Terabe, T. Hasegawa, I. Valov, R. Waser, M. Aono, Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv. Funct. Mater. 22, 70–77 (2012)

    Article  CAS  Google Scholar 

  21. S. Rahbarpour, S.M. Hosseini-Golgoo, Diode type Ag–TiO2 hydrogen sensors. Sens. Actuators B 187, 262–266 (2013)

    Article  CAS  Google Scholar 

  22. E. Gale, TiO2-based memristors and ReRAM: materials, mechanisms and models (a review). Semicond. Sci. Technol. 29, 104004 (2014)

    Article  Google Scholar 

  23. G. Hassan, J. Bae, M.U. Khan, S. Ali, Resistive switching device based on water and zinc oxide heterojunction for soft memory applications. Mater. Sci. Eng. B 246, 1–6 (2019)

    Article  CAS  Google Scholar 

  24. K. Harrison, J.I. Levene, Electrolysis of Water, in Solar hydrogen generation: toward a renewable energy future, ed. by K. Rajeshwar, R. McConnell, S. Licht (Springer, New York, 2008), pp. 41–63

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (2016R1A2B4015627 and 2019R1H1A2086726).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinho Bae.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1026 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.U., Hassan, G. & Bae, J. Resistive switching memory utilizing water and titanium dioxide thin film Schottky diode. J Mater Sci: Mater Electron 30, 18744–18752 (2019). https://doi.org/10.1007/s10854-019-02227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02227-7

Navigation