Skip to main content
Log in

Impedance analysis and conduction mechanism of Ba doped Mn1.75Ni0.7Co0.5−x Cu0.05O4 NTC thermistors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polycrystalline Mn1.75Ni0.7Co0.5−x Cu0.05Ba x O4 (x = 0, 0.05 and 0.1) based negative temperature coefficient (NTC) thermistors were synthesized using conventional solid state reaction method. X-ray diffraction (XRD) analysis confirmed the presence of single phase cubic spinel structure for all the compositions and successful substitution of Ba. Scanning electron microscopy (SEM) revealed a dense microstructure along with slight increase in grain size due to Ba doping. Impedance spectroscopy (IS) studies showed that the increase in temperature caused both grain and grain boundary resistance to decrease indicating NTC behavior of the samples. The grain boundary resistance was several magnitudes greater than the resistance of grains which showed that the NTC characteristic of doped samples was mainly dependent on grain boundaries. The time constant for both grain and grain boundary decreased with temperature indicating a hopping conduction mechanism. These results can lead to design the optimum microstructure for various practical applications of NTC thermistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Jadhav, S. Mathad, V. Puri, Studies on the properties of Ni0.6Cu0.4Mn2O4NTC ceramic due to Fe doping. Ceram. Int. 38(6), 5181–5188 (2012)

    Article  Google Scholar 

  2. J.M. Varghese, A. Seema, K.R. Dayas, Microstructural, electrical and reliability aspects of chromium doped Ni–Mn–Fe–O NTC thermistor materials. Mater. Sci. Eng., B 149(1), 47–52 (2008)

    Article  Google Scholar 

  3. M.N. Muralidharan et al., Optimization of process parameters for the production of Ni–Mn–Co–Fe based NTC chip thermistors through tape casting route. J. Alloy. Compd. 509(38), 9363–9371 (2011)

    Article  Google Scholar 

  4. J. Xia et al., Sintering temperature and impedance analysis of Mn0.9Co1.2Ni0.27Mg0.15Al0.03Fe0.45O4 NTC ceramic prepared by W/O microemulsion method. J. Alloy. Compd. 617, 228–234 (2014)

    Article  Google Scholar 

  5. K. Park et al., Improvement in the electrical stability of Mn–Ni–Co–O NTC thermistors by substituting Cr2O3 for Co3O4. J. Alloy. Compd. 437(1), 211–214 (2007)

    Article  Google Scholar 

  6. K. Park et al., Structural and electrical properties of MgO-doped Mn1.4Ni1.2Co0.4−x Mg x O4 (0 ≤ x ≤ 0.25) NTC thermistors. J. Eur. Ceram. Soc. 27(4), 2009–2016 (2007)

    Article  Google Scholar 

  7. W. Wang et al., Synthesis of nanocrystalline Ni1Co0.2 Mn1.8O4 powders for NTC thermistor by a gel auto-combustion process. Ceram. Int. 33(3), 459–462 (2007)

    Article  Google Scholar 

  8. M. Hosseini, The effect of cation composition on the electrical properties and aging of Mn-Co-Ni thermistors. Ceram. Int. 26(3), 245–249 (2000)

    Article  Google Scholar 

  9. K. Park, I. Han, Effect of Cr2O3 addition on the microstructure and electrical properties of Mn-Ni-Co oxides NTC thermistors. J. Electroceram. 17(2–4), 1069–1073 (2006)

    Article  Google Scholar 

  10. J.M. Varghese, A. Seema, K. Dayas, Microstructural, electrical and reliability aspects of chromium doped Ni–Mn–Fe–O NTC thermistor materials. Mater. Sci. Eng. B 149(1), 47–52 (2008)

    Article  Google Scholar 

  11. R.C. Buchanan, Ceramic materials for electronics: processing, properties, and applications (Marcel Dekker, NY, USA, 1986)

    Google Scholar 

  12. R. Jadhav, S. Mathad, V. Puri, Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram. Int. 38(6), 5181–5188 (2012)

    Article  Google Scholar 

  13. M. Muralidharan et al., Effect of Cu and Fe addition on electrical properties of Ni–Mn–Co–O NTC thermistor compositions. Ceram. Int. 38(8), 6481–6486 (2012)

    Article  Google Scholar 

  14. H. Zhang, A. Chang, C. Peng, Preparation and characterization of Fe3+ -doped Ni0.9Co0.8Mn1.3−x Fe x O4 (0 ≤ x ≤ 0.7) negative temperature coefficient ceramic materials. Microelectron. Eng. 88(9), 2934–2940 (2011)

    Article  Google Scholar 

  15. J. Xia et al., Synthesis and properties of Mn1.05−y Co1.95−xzw Ni x Mg y Al z Fe w O4 NTC ceramic by co-precipitation method. J. Alloy. Compd. 646, 249–256 (2015)

    Article  Google Scholar 

  16. K. Park, D. Bang, Electrical properties of Ni–Mn–Co–(Fe) oxide thick-film NTC thermistors prepared by screen printing. J. Mater. Sci.: Mater. Electron. 14(2), 81–87 (2003)

    Google Scholar 

  17. K. Park et al., Influence of the composition and the sintering temperature on the electrical resistivities of Ni-Mn-Co-(Fe) oxide NTC thermistors. J. Korean Phys Soc 41(2), 251–256 (2002)

    Google Scholar 

  18. K. Park, J. Lee, The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95−x Ni0.45Co0.15Cu0.45Zn x O4 (0 ≤ x ≤ 0.3) NTC thermistors. J. Alloy. Compd. 475(1), 513–517 (2009)

    Article  Google Scholar 

  19. M. Muralidharan et al., Optimization of process parameters for the production of Ni–Mn–Co–Fe based NTC chip thermistors through tape casting route. J. Alloy. Compd. 509(38), 9363–9371 (2011)

    Article  Google Scholar 

  20. K. Park et al., The effect of Zn on the microstructure and electrical properties of Mn1.17−x Ni0.93Co0.9Zn x O4 (0 ≤ x ≤ 0.075) NTC thermistors. J. Alloy. Compd. 467(1), 310–316 (2009)

    Article  Google Scholar 

  21. R. Jadhav, S. Mathad, V. Puri, Studies on the properties of Ni0.6 Cu0.4 Mn2O4 NTC ceramic due to Fe doping. Ceram. Int. 38(6), 5181–5188 (2012)

    Article  Google Scholar 

  22. C. Yuan et al., Electrical properties of Sr x Ba1−x Fe0.6Sn0.4O3−ε NTC thermistors. Bull. Mater. Sci. 35(3), 425–431 (2012)

    Article  Google Scholar 

  23. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32(5), 751–767 (1976)

    Article  ADS  Google Scholar 

  24. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66(8), 3850–3856 (1989)

    Article  ADS  Google Scholar 

  25. J.R. Macdonald, W.B. Johnson, Fundamentals of Impedance Spectroscopy, in Impedance Spectroscopy: Theory, Experiment, and Applications, edn. 2. (Wiley, NJ, USA, 2005), pp. 1–26

  26. M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram. Int. 41(9), 11436–11444 (2015)

    Article  Google Scholar 

  27. S. Song, Z. Ling, F. Placido, Impedance analysis of MnCoCuO NTC ceramic. Mater. Res. Bull. 40(7), 1081–1093 (2005)

    Article  Google Scholar 

  28. M.A. Rafiq et al., Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: a comparison study. Cryst. Growth Des. 15(3), 1289–1294 (2015)

    Article  Google Scholar 

  29. H. Zhang, A. Chang, C. Peng, Preparation and characterization of Fe3+-doped Ni0.9Co0.8Mn1.3−x Fe x O4 (0 ≤ x ≤ 0.7) negative temperature coefficient ceramic materials. Microelectron. Eng. 88(9), 2934–2940 (2011)

    Article  Google Scholar 

  30. K. Park et al., Structural and electrical properties of MgO-doped Mn1.4Ni1.2Co0.4−xMgxO4 (0 ≤ x ≤ 0.25) NTC thermistors. J. Eur. Ceram. Soc. 27(4), 2009–2016 (2007)

    Article  Google Scholar 

  31. S. Jagtap et al., Study of microstructure, impedance and dc electrical properties of RuO2–spinel based screen printed ‘green’NTC thermistor. Curr. Appl. Phys. 10(4), 1156–1163 (2010)

    Article  ADS  Google Scholar 

  32. N. Hirose, A.R. West, Impedance spectroscopy of undoped BaTiO3 ceramics. J. Am. Ceram. Soc. 79(6), 1633–1641 (1996)

    Article  Google Scholar 

  33. J. Fleig, J. Maier, The influence of laterally inhomogeneous contacts on the impedance of solid materials: a three-dimensional finite-element study. J. Electroceram. 1(1), 73–89 (1997)

    Article  Google Scholar 

  34. A. Kamal et al., Structural and impedance spectroscopic studies of CuO-doped (K0.5Na0.5Nb0.995Mn0.005O3) lead-free piezoelectric ceramics. Appl. Phys. A 122(12), 1037 (2016)

    Article  ADS  Google Scholar 

  35. Q.K. Muhammad et al., Structural, dielectric, and impedance study of ZnO-doped barium zirconium titanate (BZT) ceramics. J. Mater. Sci. 51(22), 10048–10058 (2016)

    Article  ADS  Google Scholar 

  36. K.C. Kao, Dielectric phenomena in solids (Academic Press, London, 2004)

    Google Scholar 

  37. R. Sagar, R. Raibagkar, Complex impedance and modulus studies of cerium doped barium zirconium titanate solid solution. J. Alloy. Compd. 549, 206–212 (2013)

    Article  Google Scholar 

  38. C. Suman, K. Prasad, R. Choudhary, Impedance analysis of Pb2Sb3LaTi5O18 ceramic. Mater. Chem. Phys. 97(2), 425–430 (2006)

    Article  Google Scholar 

  39. A.K. Jonscher, The universal’dielectric response. Nature 267, 673–679 (1977)

    Article  ADS  Google Scholar 

  40. J. Xia et al., Sintering temperature and impedance analysis of Mn0.9Co1.2Ni0.27Mg0.15Al0.03Fe0.45O4 NTC ceramic prepared by W/O microemulsion method. J. Alloy. Compd. 617, 228–234 (2014)

    Article  Google Scholar 

  41. K. Park et al., Structural and electrical properties of MgO-doped Mn1.4Ni1.2Co0.4−x MgxO4 (0 ≤ x ≤ 0.25) NTC thermistors. J. Eur. Ceram. Soc. 27(4), 2009–2016 (2007)

    Article  Google Scholar 

  42. J. Xia et al., Synthesis and properties of Mn1.05−yCo1.95−x−z−w Ni x Mg y Al z Fe w O4 NTC ceramic by co-precipitation method. J. Alloy. Compd. 646, 249–256 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Rafiq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiq, M.A., Khan, M.T., Muhammad, Q.K. et al. Impedance analysis and conduction mechanism of Ba doped Mn1.75Ni0.7Co0.5−x Cu0.05O4 NTC thermistors. Appl. Phys. A 123, 589 (2017). https://doi.org/10.1007/s00339-017-1192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1192-y

Navigation