Skip to main content
Log in

Heterogeneous photo-Fenton degradation of rhodamine B dye via a high visible-light responsive Bi2WO6 and BiFeO3 heterojunction composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel Bi2WO6 and BiFeO3 heterojunction composites with enhanced visible-light response ability have been successfully synthesized via a facile solvothermal route, which possessed high heterogeneous photo-Fenton for degrading rhodamine B dye. The results of characterizations suggested that the composites of Bi2WO6 and BiFeO3 not only have been synthesized, but also the heterojunction structure have been formed. It was found that the stepped construction of Bi2WO6/BiFeO3 heterojunction can minify the band gap to promote the separation and migration of the photogenerated electron–hole pairs, thus Bi2WO6/BiFeO3 exhibited better visible-light response and photocatalytic activity than that of pure Bi2WO6, degrading Rhodamine B (RhB) 98.07% within 75 min. BiFeO3 did not exhibited the visible photocatalytic activity as same as Bi2WO6, however, it was illustrated that the heterogeneous photo-Fenton reaction can be facilitated through coupling BiFeO3. Moreover, the enhanced photocatalytic activity of Bi2WO6/BiFeO3 could further promote the Fe2+/Fe3+ cycling to form an excellent photo-Fenton system. Hence, photo-Fenton system of Bi2WO6/BiFeO3 could generate more free radicals to more efficiently degrade RhB, achieving nearly 100% after 20 min of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. A. Kumar, S.K. Sharma, G. Sharma et al., J. Hazard. Mater. 364, 429 (2018). https://doi.org/10.1016/j.jhazmat.2018.10.060

    Article  Google Scholar 

  2. Y. Boyjoo, H. Sun, J. Liu, V.K. Pareek, S. Wang, Chem. Eng. J. 310, 537 (2017). https://doi.org/10.1016/j.cej.2016.06.090

    Article  Google Scholar 

  3. H. Kooshki, A. Sobhani-Nasab, M. Eghbali-Arani, F. Ahmadi, V. Ameri, M. Rahimi-Nasrabadi, Sep. Purif. Technol. 211, 873 (2019). https://doi.org/10.1016/j.seppur.2018.10.057

    Article  Google Scholar 

  4. A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi et al., Mater. Lett. 238, 159 (2019). https://doi.org/10.1016/j.matlet.2018.11.175

    Article  Google Scholar 

  5. A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, J. Mater. Sci. 30, 5854 (2019). https://doi.org/10.1007/s10854-019-00883-3

    Google Scholar 

  6. J. Yi, H. Mo, B. Zhang, J. Song, D. Liu, G. Zhuo, Sep. Purif. Technol. 211, 474 (2019). https://doi.org/10.1016/j.seppur.2018.10.022

    Article  Google Scholar 

  7. N. Tahmasebi, Z. Maleki, P. Farahnak, Mater. Sci. Semicond. Process. 89, 32 (2019). https://doi.org/10.1016/j.mssp.2018.08.026

    Article  Google Scholar 

  8. H. Najafian, F. Manteghi, F. Beshkar, M. Salavati-Niasari, J. Hazard. Mater. 361, 210 (2019). https://doi.org/10.1016/j.jhazmat.2018.08.092

    Article  Google Scholar 

  9. L. Zhang, G. Wang, Z. Xiong, H. Tang, C. Jiang, Appl. Surf. Sci. 436, 162 (2018). https://doi.org/10.1016/j.apsusc.2017.11.280

    Article  Google Scholar 

  10. X. Hu, W. Wang, G. Xie et al., Chemosphere 216, 733 (2019). https://doi.org/10.1016/j.chemosphere.2018.10.181

    Article  Google Scholar 

  11. S. Zhong, C. Lv, S. Zou, F. Zhang, S. Zhang, J. Mater. Sci. 29, 2447 (2018). https://doi.org/10.1007/s10854-017-8164-z

    Google Scholar 

  12. W. Zhang, J. Wang, Y. Yang, Y. Liang, Z. Gao, J. Colloid Interface Sci. 531, 502 (2018). https://doi.org/10.1016/j.jcis.2018.07.076

    Article  Google Scholar 

  13. Y. Zhou, P. Lv, W. Zhang et al., Appl. Surf. Sci. 457, 925 (2018). https://doi.org/10.1016/j.apsusc.2018.07.024

    Article  Google Scholar 

  14. W. Mao, T. Wang, H. Wang, S. Zou, S. Liu, J. Mater. Sci. 29, 15174 (2018). https://doi.org/10.1007/s10854-018-9659-y

    Google Scholar 

  15. C.-Y. Zou, S.-Q. Liu, Z. Shen, Y. Zhang, N.-S. Jiang, W.-C. Ji, Chin. J. Catal. 38, 20 (2017). https://doi.org/10.1016/s1872-2067(17)62752-9

    Article  Google Scholar 

  16. T. Zhang, Y. Shen, Y. Qiu et al., ACS Sustain. Chem. Eng. 5, 4630 (2017). https://doi.org/10.1021/acssuschemeng.6b03138

    Article  Google Scholar 

  17. T. Xian, H. Yang, J.F. Dai, Z.Q. Wei, J.Y. Ma, W.J. Feng, Mater. Lett. 65, 1573 (2011). https://doi.org/10.1016/j.matlet.2011.02.080

    Article  Google Scholar 

  18. G. Zhang, L. Zhang, Y. Liu et al., ACS Appl. Mater. Interfaces. 8, 26783 (2016). https://doi.org/10.1021/acsami.6b08676

    Article  Google Scholar 

  19. J. Yin, G. Liao, J. Zhou et al., Sep. Purif. Technol. 168, 134 (2016). https://doi.org/10.1016/j.seppur.2016.05.049

    Article  Google Scholar 

  20. T. Soltani, B.-K. Lee, Chem. Eng. J. 313, 1258 (2017). https://doi.org/10.1016/j.cej.2016.11.016

    Article  Google Scholar 

  21. Y. Jia, C. Wu, D.-H. Kim et al., Chem. Eng. J. 337, 709 (2018). https://doi.org/10.1016/j.cej.2017.12.137

    Article  Google Scholar 

  22. P. Li, L. Li, M. Xu, Q. Chen, Y. He, Appl. Surf. Sci. 396, 879 (2017). https://doi.org/10.1016/j.apsusc.2016.11.052

    Article  Google Scholar 

  23. Y.P. Bhoi, B.G. Mishra, Chem. Eng. J. 344, 391 (2018). https://doi.org/10.1016/j.cej.2018.03.094

    Article  Google Scholar 

  24. S. Chaiwichian, K. Wetchakun, W. Kangwansuparnonkon, N. Wetchakun, J. Photochem. Photobiol., A 349, 183 (2017). https://doi.org/10.1016/j.jphotochem.2017.09.034

    Article  Google Scholar 

  25. T. Wang, W. Liu, Y. Gao, S. Liu, J. Mater. Sci. 28, 14949 (2017). https://doi.org/10.1007/s10854-017-7367-7

    Google Scholar 

  26. H. Zhang, S. Cheng, B. Li, X. Cheng, Q. Cheng, Sep. Purif. Technol. 202, 242 (2018). https://doi.org/10.1016/j.seppur.2018.03.072

    Article  Google Scholar 

  27. S. Zhong, F. Zhang, W. Lu, T. Wang, L. Qu, RSC Adv. 5, 68646 (2015). https://doi.org/10.1039/c5ra08538a

    Article  Google Scholar 

  28. G. Wang, S. Liu, T. He et al., Mater. Res. Bull. 104, 104 (2018). https://doi.org/10.1016/j.materresbull.2018.04.013

    Article  Google Scholar 

  29. A. Malathi, P. Arunachalam, V.S. Kirankumar, J. Madhavan, A.M. Al-Mayouf, Opt. Mater. 84, 227 (2018). https://doi.org/10.1016/j.optmat.2018.06.067

    Article  Google Scholar 

  30. J. Tang, R. Wang, M. Liu et al., Chem. Eng. J. 351, 1056 (2018). https://doi.org/10.1016/j.cej.2018.06.171

    Article  Google Scholar 

  31. H. Zhou, Z. Wen, J. Liu, J. Ke, X. Duan, S. Wang, Appl. Catal. B 242, 76 (2019). https://doi.org/10.1016/j.apcatb.2018.09.090

    Article  Google Scholar 

  32. S.P. Pattnaik, A. Behera, S. Martha, R. Acharya, K. Parida, J. Nanoparticle Res. 20, 10 (2018). https://doi.org/10.1007/s11051-017-4110-5

    Article  Google Scholar 

  33. Y. Shang, Y. Cui, R. Shi, P. Yang, Mater. Sci. Semicond. Process. 89, 240 (2019). https://doi.org/10.1016/j.mssp.2018.09.026

    Article  Google Scholar 

  34. Y. Zhou, Z. Tian, Z. Zhao et al., ACS Appl. Mater. Interfaces. 3, 3594 (2011). https://doi.org/10.1021/am2008147

    Article  Google Scholar 

  35. T. Soltani, A. Tayyebi, B.-K. Lee, Catal. Today (2018). https://doi.org/10.1016/j.cattod.2018.09.030

    Google Scholar 

  36. E. Shang, Y. Li, J. Niu, S. Li, G. Zhang, X. Wang, Chemosphere 211, 34 (2018). https://doi.org/10.1016/j.chemosphere.2018.07.130

    Article  Google Scholar 

  37. T. Wang, S. Zhong, S. Zou, F. Jiang, L. Feng, X. Su, Photochem. Photobiol. (2017). https://doi.org/10.1111/php.12739

    Google Scholar 

  38. T. Wang, G. Xiao, C. Li, S. Zhong, F. Zhang, Mater. Lett. 138, 81 (2015). https://doi.org/10.1016/j.matlet.2014.09.106

    Article  Google Scholar 

  39. Z. Zhu, W. Fan, Z. Liu et al., J. Photochem. Photobiol., A 358, 284 (2018). https://doi.org/10.1016/j.jphotochem.2018.03.027

    Article  Google Scholar 

  40. R. Tao, C. Shao, X. Li et al., J. Colloid Interface Sci. 529, 404 (2018). https://doi.org/10.1016/j.jcis.2018.06.035

    Article  Google Scholar 

  41. L. Zhou, J. Lei, L. Wang, Y. Liu, J. Zhang, Appl. Catal. B (2017). https://doi.org/10.1016/j.apcatb.2017.08.039

    Google Scholar 

  42. Y. Wang, Y. Zeng, X. Chen et al., Green Chem. (2018). https://doi.org/10.1039/C7GC03731G

    Google Scholar 

Download references

Acknowledgements

The present work was financially supported by Thirteenth Five-Year Science and Technology Project of the Education Department of Jilin Province in 2018 (JJKH20180653KJ) and (JJKH20180686KJ), PhD start-up fund of Jilin Agricultural University (201723), Outstanding Young Talents Fund Project of Jilin Provincial Department of Science and Technology in 2019 (20190103109JH), National Key Research and Development Program (2017YFD0300405-4), Special Construction of Modern Agricultural Industrial Technology Systems (nycytx-38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxia Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Mao, W., Wu, Y. et al. Heterogeneous photo-Fenton degradation of rhodamine B dye via a high visible-light responsive Bi2WO6 and BiFeO3 heterojunction composites. J Mater Sci: Mater Electron 30, 16452–16462 (2019). https://doi.org/10.1007/s10854-019-02021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02021-5

Navigation