Skip to main content

Advertisement

Log in

Modulating topological structure of carbon nanotube/cyanate ester-boron nitride/cyanate ester multi-layered composites for enhancing dielectric properties, breakdown strength and energy density

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Constructing multi-layered structures based on insulating layers and conductor/polymer composites is proved to be an effective strategy of preparing high dielectric constant conductor/polymer composites with suppressed dielectric loss, high breakdown strength and high energy density; however, up-to-date, researches are mainly focused on three-layer structures, the influence of the layer number on dielectric properties, breakdown strength and energy density of multi-layered composites has not been clearly elaborated yet. Starting from a typical three-layer structure composite (CBC) with outstanding integrated performance using carbon nanotube (CNT)/cyanate ester resin (CE) and hexagonal boron nitride (BN)/CE composites as C layer and B layer, respectively, new four-layer structure (CBCB) and five-layer structure (CBCBC and BCBCB) composites were fabricated to reveal the role and mechanism of layer number and BN content, consequently finding a new technique to get multi-layered composites with better integrated performances. Results show that when the content of BN in B layer is 20 wt%, the five-layer structure composite (CBC20BC) achieves the highest energy density, about 6264% higher than that of 0.4CNT/CE, this improvement of energy density is the maximum value among all multi-layered composites based on conductor/polymer layer reported so far. In addition, the dielectric constant of CBC20BC composite is as high as 352 (100 Hz), and the breakdown strength of CBC20BC composite is 1.4 times of that of CBC composite. The mechanism behind these excellent integrated performances is that the increase in layer number not only enhances the interfacial polarization, but also extends the length and tortuosity of breakdown path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z.M. Dang, M.S. Zheng, J.W. Zha, Small 12, 1688 (2016)

    Article  Google Scholar 

  2. C. Liu, L.H. Zheng, L. Yuan, Q.B. Guan, A.J. Gu, G.Z. Liang, J. Phys. Chem. C 120, 28875 (2016)

    Article  Google Scholar 

  3. C.X. Xu, L. Yuan, G.Z. Liang, A.J. Gu, J. Mater. Chem. C 4, 3175 (2016)

    Article  Google Scholar 

  4. W. Li, R.Q. Chu, Z.J. Xu, J.G. Hao, C.C. Hu, J. Du, P. Fu, D.H. Wei, Z.X. Yue, J. Mater. Sci. Mater. Electron. 29, 20952 (2018)

    Article  Google Scholar 

  5. Z. Chen, Y.N. Liu, L.J. Fang, P.K. Jiang, X.Y. Huang, Appl. Surf. Sci. 470, 348 (2019)

    Article  Google Scholar 

  6. A. Klug, M. Denk, T. Bauer, M. Sandholzer, U. Scherf, C. Slugovc, E.J.W. List, Org. Electron. 14, 500 (2013)

    Article  Google Scholar 

  7. S. Sun, L.H. Zheng, L. Yuan, Q.B. Guan, G.Z. Liang, A.J. Gu, J. Appl. Polym. Sci. 134, 45218 (2017)

    Article  Google Scholar 

  8. A. Toor, H. So, A.P. Pisano, ACS Appl. Mater. Interfaces 9, 6369 (2017)

    Article  Google Scholar 

  9. L. Zhang, D.R. Wang, P.H. Hu, J.W. Zha, F. You, S.T. Li, Z.M. Dang, J. Mater. Chem. C 3, 4883 (2015)

    Article  Google Scholar 

  10. M.H. Yao, Y. Yuan, E.Z. Li, B. Tang, S.R. Zhang, J. Mater. Sci. Mater. Electron. 29, 20680 (2018)

    Article  Google Scholar 

  11. Y.C. Jiao, L. Yuan, G.Z. Liang, A.J. Gu, Chem. Eng. J. 285, 650 (2016)

    Article  Google Scholar 

  12. S.P. Pawar, S. Biswas, G.P. Kar, S. Bose, Polymer 84, 398 (2016)

    Article  Google Scholar 

  13. C.Q. Lu, L. Yuan, Q.B. Guan, A.J. Gu, G.Z. Liang, J. Phys. Chem. C 122, 5238 (2018)

    Article  Google Scholar 

  14. X.B. Zhang, L. Yuan, Q.B. Guan, G.Z. Liang, A.J. Gu, J. Mater. Chem. A 5, 21909 (2017)

    Article  Google Scholar 

  15. B.H. Wang, G.Z. Liang, Y.C. Jiao, A.J. Gu, L.M. Liu, L. Yuan, W. Zhang, Carbon 54, 224 (2013)

    Article  Google Scholar 

  16. Y.Q. Chen, B.P. Lin, X.Q. Zhang, J.C. Wang, C.W. Lai, Y. Sun, Y.R. Liu, H. Yang, J. Mater. Chem. A 2, 14118 (2014)

    Article  Google Scholar 

  17. Y. Shen, Y.H. Hu, W.W. Chen, J.J. Wang, Y.H. Guan, J.W. Du, X. Zhang, J. Ma, M. Li, Y.H. Lin, L.Q. Chen, C.W. Nan, Nano Energy 18, 176 (2015)

    Article  Google Scholar 

  18. Z.C. Shi, J. Wang, F. Mao, C.Q. Yang, C. Zhang, R.H. Fan, J. Mater. Chem. A 5, 14575 (2017)

    Article  Google Scholar 

  19. L.L. Sun, B. Li, Y. Zhao, G. Mitchell, W.H. Zhong, Nanotechnology 21, 305702 (2010)

    Article  Google Scholar 

  20. Y.P. Ma, H. Luo, R. Guo, K.C. Zhou, D. Zhang, Ceram. Int. 44, 20871 (2018)

    Article  Google Scholar 

  21. J.M. Zhu, J.B. Shen, S.Y. Guo, H.J. Sue, Carbon 84, 355 (2015)

    Article  Google Scholar 

  22. W.L. Gao, Y. Zheng, J.B. Shen, S.Y. Guo, ACS Appl. Mater. Interfaces 7, 1541 (2015)

    Article  Google Scholar 

  23. J.M. Zhu, S.S. Luo, B. Cao, J.B. Shen, S.Y. Guo, RSC Adv. 5, 65927 (2015)

    Article  Google Scholar 

  24. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater Sci. 57, 660 (2012)

    Article  Google Scholar 

  25. B.H. Wang, L.M. Liu, L.Z. Huang, L.F. Chi, G.Z. Liang, L. Yuan, A.J. Gu, Carbon 85, 28 (2015)

    Article  Google Scholar 

  26. B.H. Wang, D.K. Qin, G.Z. Liang, A.J. Gu, L.M. Liu, L. Yuan, J. Phys. Chem. C 117, 15487 (2013)

    Article  Google Scholar 

  27. Z.C. Zhang, Y.Z. Gu, S.K. Wang, Q.W. Li, M. Li, Z.G. Zhang, Carbon 107, 405 (2016)

    Article  Google Scholar 

  28. Y.F. Wang, J. Cui, Q.B. Yuan, Y.J. Niu, Y.Y. Bai, H. Wang, Adv. Mater. 27, 6658 (2015)

    Article  Google Scholar 

  29. K. Han, Q. Li, C. Chanthad, M.R. Gadinski, G.Z. Zhang, Q. Wang, Adv. Funct. Mater. 25, 3505 (2015)

    Article  Google Scholar 

  30. Y. Shen, D.S. Shen, X. Zhang, J.Y. Jiang, Z.K. Dan, Y. Song, Y.H. Lin, M. Li, C.W. Nan, J. Mater. Chem. A 4, 8359 (2016)

    Article  Google Scholar 

  31. P.H. Hu, Y. Shen, Y.H. Guan, X.H. Zhang, Y.H. Lin, Q.M. Zhang, C.W. Nan, Adv. Funct. Mater. 24, 3172 (2014)

    Article  Google Scholar 

  32. N.X. Xu, L. Hu, Q.L. Zhang, X.R. Xiao, H. Yang, E. Yu, ACS Appl. Mater. Interfaces 7, 27373 (2015)

    Article  Google Scholar 

  33. S. Amrin, V.D. Deshpande, J. Mater. Sci. 51, 2453 (2016)

    Article  Google Scholar 

  34. B.H. Wang, Y.C. Jiao, A.J. Gu, G.Z. Liang, L. Yuan, Compos. Sci. Technol. 91, 8 (2014)

    Article  Google Scholar 

  35. X.D. Zhao, J.P. Cao, J. Zhao, G.H. Hu, Z.M. Dang, J. Mater. Chem. A 2, 10614 (2014)

    Article  Google Scholar 

  36. B.H. Wang, L.M. Liu, G.Z. Liang, L. Yuan, A.J. Gu, J. Mater. Chem. A 3, 23162 (2015)

    Article  Google Scholar 

  37. A.V. Goncharenko, V.Z. Lozovski, E.F. Venger, Opt. Commun. 174, 19 (2000)

    Article  Google Scholar 

  38. Z.Y. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen, Q.B. Zheng, J.K. Kim, Carbon 123, 385 (2017)

    Article  Google Scholar 

  39. Y. Wu, Z.Y. Wang, X. Shen, X. Liu, N.M. Han, Q.B. Zheng, Y.W. Mai, J.K. Kim, ACS Appl. Mater. Interfaces 10, 26641 (2018)

    Article  Google Scholar 

  40. P.R. Bueno, S.A. Pianaro, E.C. Pereira, L.O.S. Bulhoes, E. Longo, J.A. Varela, J. Appl. Phys. 84, 3700 (1998)

    Article  Google Scholar 

  41. R. Schmidt, W. Eerenstein, T. Winiecki, F.D. Morrison, P.A. Midgley, Phys. Rev. B 75, 245111 (2007)

    Article  Google Scholar 

  42. J. Schiffbauer, U. Liel, G. Yossifon, Phys. Rev. E 89, 033017 (2014)

    Article  Google Scholar 

  43. S.H. Yao, J.K. Yuan, T. Zhou, Z.M. Dang, J.B. Bai, J. Phys. Chem. C 115, 20011 (2011)

    Article  Google Scholar 

  44. Z.M. Dang, S.H. Yao, J.K. Yuan, J.B. Bai, J. Phys. Chem. C 114, 13204 (2010)

    Article  Google Scholar 

  45. V.K. Prateek, R.K. Thakur, Gupta. Chem. Rev. 116, 4260 (2016)

    Article  Google Scholar 

  46. C. Jiang, D. Zhang, K.C. Zhou, X.F. Zhou, H. Luo, I. Abrahams, J. Mater. Chem. A 4, 18050 (2016)

    Article  Google Scholar 

  47. G.Y. Wang, X.Y. Huang, P.K. Jiang, ACS Appl. Mater. Interfaces 9, 7547 (2017)

    Article  Google Scholar 

  48. X. Zhang, Y. Shen, B. Xu, Q.H. Zhang, L. Gu, J.Y. Jiang, J. Ma, Y.H. Lin, C.W. Nan, Adv. Mater. 28, 2055 (2016)

    Article  Google Scholar 

  49. Y.C. Xie, Y.Y. Yu, Y.F. Feng, W.R. Jiang, Z.C. Zhang, ACS Appl. Mater. Interfaces 9, 2995 (2017)

    Article  Google Scholar 

  50. Z. Pan, L. Yao, J. Zhai, X. Yao, H. Chen, Adv. Mater. 30, 1705662 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Grant No. 51873135), Key Major Program of Natural Science Fundamental Research Project of Jiangsu Colleges and Universities (Grant No. 18KJA430013), and Priority Academic Program Development of the Jiangsu Higher Education Institution (PAPD) for financially supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guozheng Liang or Aijuan Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yuan, L., Liang, G. et al. Modulating topological structure of carbon nanotube/cyanate ester-boron nitride/cyanate ester multi-layered composites for enhancing dielectric properties, breakdown strength and energy density. J Mater Sci: Mater Electron 30, 15952–15963 (2019). https://doi.org/10.1007/s10854-019-01956-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01956-z

Navigation