Skip to main content
Log in

Investigation of the synergic effect of silver on the photodegradation behavior of copper chromite nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure copper chromite nanoparticles were prepared through an efficient route using copper nitrate and chromium nitrate. For the first time, various amino acids were employed as capping agents in the presence of propylene glycol and ethylene glycol in order to prepare these nanostructures. A number of experiments were performed to examine the effect of stabilization agents, alkaline agents and connecting agents on the shape, grain size and photodegradation behavior of CuCr2O4. The results showed that the type of stabilization agent and reducing agent creates numerous changes in terms of the size and photocatalytic performance of copper chromite. The effects of several factors, including the type of pollutant, grain size of CuCr2O4 nanostructures, pH and dosage of dye, on the photocatalytic behavior of copper chromite nanostructure were evaluated. Solutions of methylene blue, methyl orange and rhodamine B were employed as model contaminants. The maximum photocatalytic activity of the CuCr2O4 nanostructure was achieved for the rhodamine B contaminant under UV irradiation. When the CuCr2O4/Ag nanostructure was used instead of CuCr2O4 nanoparticles, the photocatalytic activity during the degradation of rhodamine B increased from 76 to 91%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 3
Fig. 14

Similar content being viewed by others

References

  1. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474 (1997)

    Article  Google Scholar 

  2. J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455 (2001)

    Article  Google Scholar 

  3. S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, Taguchi robust design to optimize synthesis of lead oxalate nano-disks. Mater. Sci. Semicond. Process. 16, 131–137 (2013)

    Article  Google Scholar 

  4. J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999)

    Article  Google Scholar 

  5. M. Aghazadeh, I. Karimzadeh, M.R. Ganjali, Electrochemical evaluation of the performance of cathodically grown ultra-fine magnetite nanoparticles as electrode material for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 28, 13532–13539 (2017)

    Google Scholar 

  6. M. Aghazadeh, M.R. Ganjali, Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance: a novel preparation strategy and characterization. J. Mater. Sci. 53, 295–308 (2018)

    Article  Google Scholar 

  7. M. Aghazadeh, Synthesis, characterization, and study of the supercapacitive performance of NiO nanoplates prepared by the cathodic electrochemical deposition—heat treatment (CED-HT) method. J. Mater. Sci.: Mater. Electron. 28, 3108–3117 (2017)

    Google Scholar 

  8. M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, Green synthesis and characterization of SmVO4 nanoparticles in the presence of carbohydrates as capping agents with investigation of visible-light photocatalytic properties. J. Electron. Mater. 47, 3757–3769 (2018)

    Article  Google Scholar 

  9. S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi,  Statistical optimization of condition for synthesis lead sulfide nanoparticles. Mater. Manuf. Process. 24, 524–528 (2009)

    Article  Google Scholar 

  10. J. Zhuang, A.D. Shaller, J. Lynch, H. Wu, O. Chen, A.D.Q. Li, Y.C. Cao, Cylindrical superparticles from semiconductor nanorods. J. Am. Chem. Soc. 131, 6084–6085 (2009)

    Article  Google Scholar 

  11. M. Aghazadeh, M.R. Ganjali, Evaluation of supercapacitive and magnetic properties of Fe3O4 nano-particles electrochemically doped with dysprosium cations: development of novel iron-based electrode. Ceram. Int. 44, 520–529 (2018)

    Article  Google Scholar 

  12. M. Rahimi-Nasrabadi, H.R. Naderi, M. Sadeghpour Karimi, F. Ahmadi, S.M. Pourmortazavi, Cobalt carbonate and cobalt oxide nanoparticles synthesis, characterization and supercapacitive evaluation. J. Mater. Sci.: Mater. Electron. 28, 1877–1888 (2017)

    Google Scholar 

  13. D. Wang, Y. Li, Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv. Mater. 23, 1044–1060 (2011)

    Article  Google Scholar 

  14. H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci. 423, 1025–1034 (2017)

    Article  Google Scholar 

  15. A. Sobhani-Nasab, H.R. Naderi, M. Rahimi-Nasrabadi, M.R. Ganjali, Evaluation of supercapacitive behavior of samarium tungstate nanoparticles synthesized via sonochemical method. J. Mater. Sci.: Mater. Electron. 28, 8588–8595 (2017)

    Google Scholar 

  16. D.S. Wang, Q. Peng, Y.D. Li, Nanocrystalline intermetallics and alloys. Nano Res. 3, 574–580 (2010)

    Article  Google Scholar 

  17. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, P. Norouzi, F. Faridbod, M. Sadeghpour Karimi, Statistically optimized synthesis of dyspersium tungstate nanoparticles as photocatalyst. J. Mater. Sci.: Mater. Electron. 27, 12860–12868 (2016)

    Google Scholar 

  18. S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Investigation the effect of temperature and polymeric capping agents on the size and photocatalytic properties of NdVO4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 16459–16466 (2017)

    Google Scholar 

  19. Z. Xiao, S. Jin, M. Pang, C. Liang, Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly efficient CuCr catalysts. Green Chem. 15, 891–895 (2013)

    Article  Google Scholar 

  20. W. Li, H. Cheng, Cu–Cr–O nanocomposites: synthesis and characterization as catalysts for solid state propellants. Solid State Sci. 9, 750–755 (2007)

    Article  Google Scholar 

  21. R. Prasad, Highly active copper chromite catalyst produced by thermal decomposition of ammoniac copper oxalate chromate. Mater. Lett. 59, 3945–3949 (2005)

    Article  Google Scholar 

  22. P.R. Patil, V.N. Krishnamurthy, S.S. Joshi, Effect of nano-copper oxide and copper chromite on the thermal decomposition of ammonium perchlorate. Propellants, Explos., Pyrotech. 33, 266–270 (2008)

    Article  Google Scholar 

  23. G.S. Pearson, Composite propellent catalysts: copper chromate and chromite. Combust. Flame 14, 73–83 (1970)

    Article  Google Scholar 

  24. E. Santacesaria, G. Carotenuto, R. Tesser, M. Di Serio, Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts. Chem. Eng. J. 179, 209–220 (2012)

    Article  Google Scholar 

  25. R.B.C. Pillai, Synthesis of secondary amines by reductive alkylation using copper chromite catalyst: steric effect of carbonyl compounds. J. Mol. Catal. 84, 125–129 (1993)

    Article  Google Scholar 

  26. H. Zhang, Y. Lei, A.J. Kropf, G. Zhang, J.W. Elam, J.T. Miller, F. Sollberger, F. Ribeiro, M.C. Akatay, E.A. Stach, J.A. Dumesic, C.L. Marshall, Corrigendum to “Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating”. J. Catal. 317, 284–292 (2014)

    Article  Google Scholar 

  27. F. Ahmadi, M. Rahimi-Nasrabadi, M. Behpour, Synthesis Nd2TiO5 nanoparticles with different morphologies by novel approach and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 28, 1531–1536 (2017)

    Google Scholar 

  28. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol-gel method. J. Mater. Sci.: Mater. Electron. 28, 14965–14973 (2017)

    Google Scholar 

  29. S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Green synthesis and characterization of NaEuTi2O6 nanoparticles and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 28, 4345–4350 (2017)

    Google Scholar 

  30. A. Abbasi, M. Hamadanian, M. Salavati-Niasari, S. Mortazavi-Drazkollah, Facile size-controlled preparation of highly photocatalytically active ZnCr2O4 and ZnCr2O4/Ag nanostructures for removal of organic contaminants. J. Colloid Interface Sci. 500, 276–284 (2017)

    Article  Google Scholar 

  31. M. Salavati-Niasari, F. Davar, M. Mazaheri, Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [bis(salicylidene)zinc(II)]. J. Alloy. Compd. 470, 502–506 (2009)

    Article  Google Scholar 

  32. C. Karunakaran, V. Rajeswari, P. Gomathisankar, Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sci. 13, 923–928 (2011)

    Article  Google Scholar 

  33. A. Abbasi, M. Hamadanian, M. Salavati-Niasari, M.P. Mazhari, Hydrothermal synthesis, characterization and photodegradation of organic pollutants of CoCr2O4/Ag nanostructure and thermal stability of epoxy acrylate nanocomposite. Adv. Powder Technol. 28, 2756–2765 (2017)

    Article  Google Scholar 

  34. M. Salavati-Niasari, Nanoscale microreactor-encapsulation of 18-membered decaaza macrocycle nickel(II) complexes. Inorg. Chem. Commun. 8, 174–177 (2005)

    Article  Google Scholar 

  35. M. Salavati-Niasari, Nanodimensional microreactor-encapsulation of 18-membered decaaza macrocycle copper(II) complexes. Chem. Lett. 34, 244–245 (2005)

    Article  Google Scholar 

  36. M. Salavati-Niasari, M. Dadkhah, F. Davar, Synthesis and characterization of pure cubic zirconium oxide nanocrystals by decomposition of bis-aqua, tris-acetylacetonato zirconium(IV) nitrate as new precursor complex. Inorg. Chem. Acta 362, 3969–3974 (2009)

    Article  Google Scholar 

  37. R. Abazari, S. Sanati, Perovskite LaFeO3 nanoparticles synthesized by the reverse microemulsion nanoreactors in the presence of aerosol-OT: morphology, crystal structure, and their optical properties. Superlattices Microstruct. 64, 148–157 (2013)

    Article  Google Scholar 

  38. M. Salavati-Niasari, Nanoscale microreactor-encapsulation 14-membered nickel(II) hexamethyl tetraaza: synthesis, characterization and catalytic activity. J. Mol. Catal. A-Chem. 229, 159–164 (2005)

    Article  Google Scholar 

  39. A.M. Al-Syadi, E.S. Yousef, M.M. El-Desoky, M.S. Al-Assiri, Kinetic characterization of barium titanate–bismuth oxide–vanadium pentoxide glasses. Solid State Sci. 32, 48–55 (2014)

    Article  Google Scholar 

  40. T. Gholami, M. Salavati-Niasari, M. Bazarganipour, E. Noori, Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by organic ligand. Superlattices Microstruct. 61, 33–41 (2013)

    Article  Google Scholar 

  41. F. Mohandes, M. Salavati-Niasari, Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects. Ultrason. Sonochem. 20, 354–365 (2013)

    Article  Google Scholar 

  42. M. Salavati-Niasari, F. Farzaneh, M. Ghandi, Oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide catalyzed by alumina-supported manganese(II) complexes. J. Mol. Catal. A-Chem. 186, 101–107 (2002)

    Article  Google Scholar 

  43. G. Kianpour, M. Salavati-Niasari, H. Emadi, Sonochemical synthesis and characterization of NiMoO4 nanorods. Ultrason. Sonochem. 20, 418–424 (2013)

    Article  Google Scholar 

  44. M. Salavati-Niasari, P. Salemi, F. Davar, Oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide catalysted by Cu(II), Ni(II), Co(II) and Mn(II) complexes of N, N′-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine, supported on alumina. J. Mol. Catal. A-Chem. 238, 215–222 (2005)

    Article  Google Scholar 

  45. M. Salavati-niasari, Synthesis and characterization of host (nanodimensional pores of zeolite-Y)–guest [unsaturated 16-membered octaaza–macrocycle manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II) complexes] nanocomposite materials. Chem. Lett. 34, 1444–1445 (2005)

    Article  Google Scholar 

  46. M. Salavati-Niasari, M. Farhadi-Khouzani, F. Davar, Bright blue pigment CoAl2O4 nanocrystals prepared by modified sol–gel method. J. Sol-Gel. Sci. Technol. 52, 321–327 (2009)

    Article  Google Scholar 

  47. S.M. Peymani‑Motlagh, A. Sobhani‑Nasab, M. Rostami, H. Sobati, M. Eghbali‑Arani, M. Fasihi‑Ramandi, M.R. Ganjali, M. Rahimi‑Nasrabadi, Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb3+ or Pr3+ ions in cobalt–nickel ferrite. J. Mater. Sci.: Mater. Electron. 30, 6902–6909 (2019)

    Google Scholar 

  48. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Aghazadeh, M.R. Ganjali, M. Sadeghpour Karimi, P. Novrouzi, Samarium carbonate and samarium oxide; synthesis, characterization and evaluation of the photo-catalytic behavior. J. Mater. Sci.: Mater. Electron. 28, 5574–5583 (2017)

    Google Scholar 

  49. M. Rahimi‑Nasrabadi, S.M. Pourmortazavi, M. Aghazadeh, M.R. Ganjali, M. Sadeghpour Karimi, P. Norouzi, Fabrication, characterization and photochemical activity of ytterbium carbonate and ytterbium oxide nanoparticles. J. Mater. Sci.: Mater. Electron.  28, 9478–9488 (2017)

    Google Scholar 

  50. M. Ebadi, O. Amiri, M. Sabet, Synthesis of CeO2/Au/Ho nanostructures as novel and highly efficient visible light driven photocatalyst. Sep. Purif. Technol. 190, 117–122 (2018)

    Article  Google Scholar 

  51. F. Beshkar, O. Amiri, M. Salavati-Niasari, F. Beshkar, Novel dendrite-like CuCr2O4 photocatalyst prepared by a simple route in order to remove of Azo Dye in textile and dyeing wastewater. J. Mater. Sci.: Mater. Electron. 26, 8182–8192 (2015)

    Google Scholar 

  52. H. Teymourinia, M. Salavati-Niasari, O. Amiri, H. Safardoust-Hojaghan, Synthesis of graphene quantum dots from corn powder and their application in reduce charge recombination and increase free charge carriers. J. Mol. Liq. 242, 447–455 (2017)

    Article  Google Scholar 

  53. A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater. Lett. 238, 159 (2019)

    Article  Google Scholar 

  54. M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Different morphologies fabrication of NiAl2O4 nanostructures with the aid of new template and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 28, 2415–2420 (2017)

    Google Scholar 

  55. K. Siwińska-Stefańska, A. Kubiak, A. Piasecki, A. Dobrowolska, K. Czaczyk, M. Motylenko, D. Rafaja, H. Ehrlich, T. Jesionowski, Hydrothermal synthesis of multifunctional TiO2-ZnO oxide systems with desired antibacterial and photocatalytic properties. Appl. Surf. Sci. 463, 791–801 (2019)

    Article  Google Scholar 

  56. M. Wysokowski, M. Motylenko, D. Rafaja, I. Koltsov, H. Stöcker, T.J. Szalaty, V.V. Bazhenov, A.L. Stelling, J. Beyer, J. Heitmann, T. Jesionowski, S. Petovic, M. Durovic, H. Ehrlich, Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti, Zr)O2 multiphase composites. Mater. Chem. Phys. 188, 115–124 (2017)

    Article  Google Scholar 

  57. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Aghazadeh, M.R. Ganjali, M. Sadeghpour Karimi, P. Novrouzi, Optimizing the procedure for the synthesis of nanoscale gadolinium(III) tungstate as efficient photocatalyst. J. Mater. Sci.: Mater. Electron. 28, 3780–3788 (2017)

    Google Scholar 

  58. M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Simple morphology-controlled fabrication of CdTiO3 nanoparticles with the aid of different capping agents. J. Mater. Sci.: Mater. Electron. 27, 13294–13299 (2016)

    Google Scholar 

  59. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M. Rangraz Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27, 11691–11697 (2016)

    Google Scholar 

  60. M. Rahimi-Nasrabadi, Effects of amino acid capping-agents on the size and morphology and photocatalytic properties of BNCTO nanostructures. J. Mater. Sci.: Mater. Electron. 28, 6373–6378 (2017)

    Google Scholar 

  61. A. Abbasi, H. Khojasteh, M. Hamadanian, M. Salavati-Niasari, Synthesis of CoFe2O4 nanoparticles and investigation of the temperature, surfactant, capping agent and time effects on the size and magnetic properties. J. Mater. Sci.: Mater. Electron. 27, 4972–4980 (2016)

    Google Scholar 

  62. M. Rahimi-Nasrabadi, M. Rostami, F. Ahmadi, A. Fallah Shojaie, M. Delavar Rafiee, Synthesis and characterization of ZnFe2-xYbxO4–graphene nanocomposites by sol–gel method. J. Mater. Sci.: Mater. Electron. 27, 11940–11945 (2016)

    Google Scholar 

  63. M. Rostami, M. Rahimi-Nasrabadi, M.R. Ganjali, F. Ahmadi, A. Fallah Shojaei, M. Delavar Rafiee, Facile synthesis and characterization of TiO2–graphene–ZnFe2-xTbxO4 ternary nano-hybrids. J. Mater. Sci. 52, 7008–7016 (2017)

    Article  Google Scholar 

  64. H. Khojasteh, M. Salavati-Niasari, M.-P. Mazhari, M. Hamadanian, RSC Advances. 6, 78043–78052 (2016)

    Article  Google Scholar 

  65. N. Zhang, S. Liu, X. Fu, Y.-J. Xu, J. Phys. Chem. C 115, 9136–9145 (2011)

    Article  Google Scholar 

  66. A. Abbasi, D. Ghanbari, M. Hamadanian, M. Salavati-Niasari, Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3-TiO2 nanoparticles and nanocomposites. J. Mater. Sci.: Mater. Electron. 27, 4800–4809 (2016)

    Google Scholar 

  67. T. Gholami, M. Salavati-Niasari, M. Sabet, A. Abbasi, Comparison of electrochemical hydrogen storage and Coulombic efficiency of ZnAl2O4 and ZnAl2O4-impregnated TiO2 synthesized using green method. J. Clean. Prod. 180, 587–594 (2018)

    Article  Google Scholar 

  68. A. Abbasi, M. Hamadanian, T. Gholami, M. Salavati-Niasari, N. Sadri, Facile preparation of PbCrO4 and PbCrO4/Ag nanostructure as an effective photocatalyst for degradation of organic contaminants. Sep. Pure Technol. 209, 79–87 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by Iran National Science Foundation (Project 94019559) and by DFG Project HE 394/3-2 (Germany). This work was also partially supported by Polish Ministry of Science and Higher Education No. 03/32/BSUB/910. M.W. receives funding from DAAD, Ref. No. 91528917.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Rahimi-Nasrabadi or Hermann Ehrlich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Keihan, A.H., Rahimi-Nasrabadi, M. et al. Investigation of the synergic effect of silver on the photodegradation behavior of copper chromite nanostructures. J Mater Sci: Mater Electron 30, 13994–14006 (2019). https://doi.org/10.1007/s10854-019-01750-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01750-x

Navigation