Skip to main content
Log in

Synthesis and characterization of mixed metal oxide nanoparticles derived from Co–Cr layered double hydroxides and their thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, cobalt as divalent and chromium as trivalent ion layered double hydroxide was prepared in the absence and in the presence acetamide as organic molecule template by using co-precipitation method in aqueous solution at the room temperature. The resulting cobalt–chromium (Co–Cr) LDH and cobalt–chromium/acetamide (Co–Cr)/A LDH were dried at 358 K. To produce mixed metal oxides in nanoscale with appropriate physical properties form both cobalt divalent and chromium trivalent LDHs, the calcination process was applied for the prepared (Co–Cr)/A LDH samples at 873 K for 3 h. The calcined and un-calcined (Co–Cr)/A LDH samples were characterized using various techniques including FTIR, TGA, XRD and SEM techniques. Before the calcination, the XRD pattern of the (Co–Cr)/Acetamide LDH displays polycrystalline of LDH, while after calcination process, the crystallinity state changes to be semi-crystalline material. Fabrication of thin film from (Co–Cr)/A LDH was conducted by thermal evaporation method (Edwards type E 306 A, England) with thickness 200 ± 5 nm. The optical characteristics of (Co–Cr)/A LDH film, within the wavelength range of 200 nm to 1000 nm spectra for both calcined and un-calcined samples, were studied. The average optical energy gaps for (Co–Cr)/A LDH film before and after calcination were 2.79 eV and 2.81 eV, respectively. The optical absorption edges revealed the existence of blue shift with increasing of the calcination temperature. The resulting results could be useful for the fabrication of micro-nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

LDH:

Layered double hydroxide

(Co–Cr) LDH:

Cobalt–chromium layered double hydroxide

(Co–Cr)/A LDH:

Cobalt–chromium/acetamide layered double hydroxide

MMOs:

Mixed metal oxides

λ:

X-ray wavelength (1.5418 Å)

a, b, c:

Lattice constants

α, β, γ :

Lattice angles

FWHM :

Full width at half maximum

PW:

Peak width

d:

d-spacing

D:

Crystallite size

A:

Absorbance

E g :

Band gap

:

Photon energy

hkl :

Miller indices

k :

Shape factor constant (0.94)

εstrain :

Weighted average strain

T(λ):

Transmittance

R(λ):

Reflectance

α :

Absorption coefficient

n(λ):

Refractive index n

k(λ):

Absorption index (extinction coefficient)

C :

Photon energy independent

ε 0 :

Free space dielectric constant

ε 1 :

Real dielectric constant

ε 2 :

Imaginary dielectric constant

θ:

Bragg angle

σ :

Optical conductivity

σ 1 :

Real part of optical conductivity

σ 2 :

Imaginary part of optical conductivity

References

  1. C. Chen, P. Wang, T.-T. Lim, L. Liu, S. Liu, R. Xu, A facile synthesis of monodispersed hierarchical layered double hydroxide on silica spheres for efficient removal of pharmaceuticals from water. J. Mater. Chem. A 1, 3877–3880 (2013)

    Article  Google Scholar 

  2. S. Werner, V.W.-H. Lau, S. Hug, V. Duppel, H. Clausen-Schaumann, B.V. Lotsch, Cationically charged MnIIAlIII LDH nanosheets by chemical exfoliation and their use as building blocks in graphene oxide-based materials. Langmuir 29, 9199–9207 (2013)

    Article  Google Scholar 

  3. M. Wilson, Handbook of Clay Science, F. Bergaya, B.K.G. Theng, G. Lagaly (Eds.). Elsevier, Amsterdam (2006), 1224 pp., £ 105, ISBN: 978-0-08-044183-2, Elsevier, 2007

  4. Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012)

    Article  Google Scholar 

  5. X. Guo, F. Zhang, D.G. Evans, X. Duan, Layered double hydroxide films: synthesis, properties and applications. Chem. Commun. 46, 5197–5210 (2010)

    Article  Google Scholar 

  6. Y. Kuang, L. Zhao, S. Zhang, F. Zhang, M. Dong, S. Xu, Morphologies, preparations and applications of layered double hydroxide micro-/nanostructures. Materials 3, 5220–5235 (2010)

    Article  Google Scholar 

  7. Y. Dou, T. Pan, A. Zhou, S. Xu, X. Liu, J. Han, M. Wei, D.G. Evans, X. Duan, Reversible thermally-responsive electrochemical energy storage based on smart LDH@ P (NIPAM-co-SPMA) films. Chem. Commun. 49, 8462–8464 (2013)

    Article  Google Scholar 

  8. J.H. Choy, S.Y. Kwak, Y.J. Jeong, J.S. Park, Inorganic layered double hydroxides as nonviral vectors. Angew. Chem. Int. Ed. 39, 4041–4045 (2000)

    Article  Google Scholar 

  9. L. Desigaux, M.B. Belkacem, P. Richard, J. Cellier, P. Léone, L. Cario, F. Leroux, C. Taviot-Guého, B. Pitard, Self-assembly and characterization of layered double hydroxide/DNA hybrids. Nano Lett. 6, 199–204 (2006)

    Article  Google Scholar 

  10. M.Z. Hussein, N.S.S.A. Rahman, S.H. Sarijo, Z. Zainal, Synthesis of a monophasic nanohybrid for a controlled release formulation of two active agents simultaneously. Appl. Clay Sci. 58, 60–66 (2012)

    Article  Google Scholar 

  11. N.-J. Kang, D.-Y. Wang, B. Kutlu, P.-C. Zhao, A. Leuteritz, U. Wagenknecht, G. Heinrich, A new approach to reducing the flammability of layered double hydroxide (LDH)-based polymer composites: preparation and characterization of dye structure-intercalated LDH and its effect on the flammability of polypropylene-grafted maleic anhydride/d-LDH composites. ACS Appl. Mater. Interfaces. 5, 8991–8997 (2013)

    Article  Google Scholar 

  12. M. Gasser, H. Mohsen, H. Aly, Humic acid adsorption onto Mg/Fe layered double hydroxide. Colloids Surf. A 331, 195–201 (2008)

    Article  Google Scholar 

  13. S. Tezuka, R. Chitrakar, A. Sonoda, K. Ooi, T. Tomida, Studies on selective adsorbents for oxo-anions. Nitrate ion-exchange properties of layered double hydroxides with different metal atoms. Green Chem. 6, 104–109 (2004)

    Article  Google Scholar 

  14. Y.X. Zhang, X.D. Hao, M. Kuang, H. Zhao, Z.Q. Wen, Preparation, characterization and dye adsorption of Au nanoparticles/ZnAl layered double oxides nanocomposites. Appl. Surf. Sci. 283, 505–512 (2013)

    Article  Google Scholar 

  15. M.S. Zoromba, A. Al-Hossainy, M. Abdel-Aziz, Conductive thin films based on poly (aniline-co-o-anthranilic acid)/magnetite nanocomposite for photovoltaic applications. Synth. Met. 231, 34–43 (2017)

    Article  Google Scholar 

  16. P.S. Braterman, P.I. Phol, Z.-P. Xu, C.J. Brinker, Y. Yang, C.R. Bryan, K. Yu, H. Xu, Y. Wang, H. Gao, Potential applications of nanostructured materials in nuclear waste management (Sandia National Laboratories, Stanford, 2003)

    Book  Google Scholar 

  17. K. Galejová, L. Obalová, K. Jirátová, K. Pacultová, F. Kovanda, N2O catalytic decomposition—effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts. Chem. Pap. 63, 172–179 (2009)

    Article  Google Scholar 

  18. K. Karásková, L. Obalová, K. Jirátová, F. Kovanda, Effect of promoters in Co–Mn–Al mixed oxide catalyst on N2O decomposition. Chem. Eng. J. 160, 480–487 (2010)

    Article  Google Scholar 

  19. S. Casenave, H. Martinez, C. Guimon, A. Auroux, V. Hulea, E. Dumitriu, Acid-Base properties of MgCuAl mixed oxides. J. Therm. Anal. Calorim. 72, 191–198 (2003)

    Article  Google Scholar 

  20. M. Park, C.-I. Lee, E.-J. Lee, J.-H. Choy, J.-E. Kim, J. Choi, Layered double hydroxides as potential solid base for beneficial remediation of endosulfan-contaminated soils. J. Phys. Chem. Solids 65, 513–516 (2004)

    Article  Google Scholar 

  21. M. Wei, Q. Yuan, D.G. Evans, Z. Wang, X. Duan, Layered solids as a “molecular container” for pharmaceutical agents: l-tyrosine-intercalated layered double hydroxides. J. Mater. Chem. 15, 1197–1203 (2005)

    Article  Google Scholar 

  22. W. Hong, J. Wang, L. Niu, J. Sun, P. Gong, S. Yang, Controllable synthesis of CoAl LDH@Ni(OH)2 nanosheet arrays as binder-free electrode for supercapacitor applications. J. Alloy. Compd. 608, 297–303 (2014)

    Article  Google Scholar 

  23. B. Schwenzer, D.E. Morse, Biologically inspired synthesis route to three-dimensionally structured inorganic thin films. J. Nanomater. (2008). https://doi.org/10.1155/2008/352871

    Google Scholar 

  24. F. Zhang, L. Zhao, H. Chen, S. Xu, D.G. Evans, X. Duan, Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angew. Chem. Int. Ed. 47, 2466–2469 (2008)

    Article  Google Scholar 

  25. R. Roto, A. Yamagishi, G. Villemure, Electrochemical quartz crystal microbalance study of mass transport in thin film of a redox active Ni–Al–Cl layered double hydroxide. J. Electroanal. Chem. 572, 101–108 (2004)

    Article  Google Scholar 

  26. S. Mondal, S. Dasgupta, K. Maji, MgAl-layered double hydroxide nanoparticles for controlled release of salicylate. Mater. Sci. Eng. C 68, 557–564 (2016)

    Article  Google Scholar 

  27. I.M. Awad, F.S. Hassan, A.E. Mohamed, A.F. Al-Hossainy, Diphosphine compounds: part I. novel biologically active 1, 1′ bis-AND/OR 1, 2-cis-(diphenylphosphino-) ethene and their complexes [M (CO) n {Ph2P (CHn) nPPh2}] & [Cu (Cl) 2 {Ph2P (CHn) nPPh2}],(M = W, Mo, Crn = 1, 2…. n). Phosphorus Sulfur Silicon 179, 1251–1266 (2004)

    Article  Google Scholar 

  28. C. Dong, X. Yuan, X. Wang, X. Liu, W. Dong, R. Wang, Y. Duan, F. Huang, Rational design of cobalt–chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation. J. Mater. Chem. A 4, 11292–11298 (2016)

    Article  Google Scholar 

  29. S.K. Kiran, M. Padmini, H.T. Das, P. Elumalai, Performance of asymmetric supercapacitor using CoCr-layered double hydroxide and reduced graphene-oxide. J. Solid State Electrochem. 21, 927–938 (2017)

    Article  Google Scholar 

  30. S. Samanta, P. Roy, P. Kar, Influence of structure of poly (o-phenylenediamine) on the doping ability and conducting property. Ionics 23, 937–947 (2017)

    Article  Google Scholar 

  31. T. Selvam, A. Inayat, W. Schwieger, Reactivity and applications of layered silicates and layered double hydroxides. Dalton Trans. 43, 10365–10387 (2014)

    Article  Google Scholar 

  32. K. Klemkaite, I. Prosycevas, R. Taraskevicius, A. Khinsky, A. Kareiva, Synthesis and characterization of layered double hydroxides with different cations (Mg Co, Ni, Al), decomposition and reformation of mixed metal oxides to layered structures. Cent. Eur. J. Chem. 9, 275–282 (2011)

    Article  Google Scholar 

  33. P. Robinson, J. Fang, Barylite, BaBe2Si2O7; its space group and crystal structure. Am. Miner. 62, 167–169 (1977)

    Google Scholar 

  34. A. Badr, A. El-Amin, A. Al-Hossainy, Synthesis and optical properties for crystals of a novel organic semiconductor [Ni (Cl) 2 {(Ph 2 P) 2 CHC (R 1 R 2) NHNH 2}]. Eur. Phys. J. B 53, 439–448 (2006)

    Article  Google Scholar 

  35. T.H. De Keijser, J. Langford, E.J. Mittemeijer, A. Vogels, Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J. Appl. Crystallogr. 15, 308–314 (1982)

    Article  Google Scholar 

  36. G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    Article  Google Scholar 

  37. A. Ibrahim, A. Al-Hossainy, Thickness dependence of structural and optical properties of novel 2-((1, 1-bis (diphenylphosphino)-2-phenylpropan-2-yl)-chromium tetracarbonyl-amino)-3-phenylpropanoic acid copper (II)(DPP-Cr-Palan-Cu) nanocrystalline thin film. Synth. Met. 209, 389–398 (2015)

    Article  Google Scholar 

  38. A.F. Al-Hossainy, A. Abd-Elmageed, A.T.A. Ibrahim, Synthesis, structural and optical properties of gold nanoparticle-graphene-selenocysteine composite bismuth ultrathin film electrode and its application to Pb(II) and Cd (II) determination. Arab. J. Chem. (2015). https://doi.org/10.1016/j.arabjc.2015.06.020

    Google Scholar 

  39. A. Al-Hossainy, M.S. Zoromba, New organic semiconductor thin film derived from p-toluidine monomer. J. Mol. Struct. 1156, 83–90 (2018)

    Article  Google Scholar 

  40. A. Al-Hossainy, M. Bassyouni, M.S. Zoromba, Elucidation of electrical and optical parameters of poly (o-anthranilic acid)-poly (o-amino phenol)/copper oxide nanocomposites thin films. J. Inorg. Organomet. Polym Mater. 28, 2572–2583 (2018)

    Article  Google Scholar 

  41. A. Schaffer, M. Gouterman, Porphyrins XXV. Extended Hückel calculations on location and spectral effects of free base protons. Theor. Chim. Acta 25, 62–82 (1972)

    Article  Google Scholar 

  42. A. Antipas, D. Dolphin, M. Gouterman, E.C. Johnson, Porphyrins. 38. Redox potentials, charge transfer transitions, and emission of copper, silver, and gold complexes. J. Am. Chem. Soc. 100, 7705–7709 (1978)

    Article  Google Scholar 

  43. M. Kasha, H. Rawls, M.A. El-Bayoumi, The exciton model in molecular spectroscopy. Pure Appl. Chem. 11, 371–392 (1965)

    Article  Google Scholar 

  44. R. Nakamura, A. Okamoto, H. Osawa, H. Irie, K. Hashimoto, Design of all-inorganic molecular-based photocatalysts sensitive to visible light: Ti(IV)–O–Ce(III) bimetallic assemblies on mesoporous silica. J. Am. Chem. Soc. 129, 9596–9597 (2007)

    Article  Google Scholar 

  45. M. Abdel-Aziz, A. Al-Hossainy, A. Ibrahim, S.A. El-Maksoud, M.S. Zoromba, M. Bassyouni, S. Abdel-Hamid, A. Abd-Elmageed, I. Elsayed, O. Alqahtani, Synthesis, characterization and optical properties of multi-walled carbon nanotubes/aniline-o-anthranilic acid copolymer nanocomposite thin films. J. Mater. Sci. Mater. Electron. 29, 16702–16714 (2018)

    Article  Google Scholar 

  46. G.B. Kamath, C. Joseph, C. Menon, Effect of air annealing on the electrical and optical properties of MgPc thin films. Mater. Lett. 57, 730–733 (2002)

    Article  Google Scholar 

  47. O.A. El-Gammal, A.F. Al-Hossainy, S.A. El-Brashy, Spectroscopic, DFT, optical band gap, powder X-ray diffraction and bleomycin-dependant DNA studies of Co (II), Ni (II) and Cu (II) complexes derived from macrocyclic Schiff base. J. Mol. Struct. 1165, 177–195 (2018)

    Article  Google Scholar 

  48. U. Pal, D. Samanta, S. Ghorai, A. Chaudhuri, Optical constants of vacuum-evaporated polycrystalline cadmium selenide thin films. J. Appl. Phys. 74, 6368–6374 (1993)

    Article  Google Scholar 

  49. F.S. Hassan, A.F. Al-Hossainy, A.E. Mohamed, Diphosphine compounds, part III: UV/Visible spectroscopy and novel routes to functionalized diphosphine-M (CO)6 complexes (M = W, Mo, or Cr). Phosphorus Sulfur Silicon 184, 2996–3022 (2009)

    Article  Google Scholar 

  50. U. Zhokhavets, R. Goldhahn, G. Gobsch, W. Schliefke, Dielectric function and one-dimensional description of the absorption of poly (3-octylthiophene). Synth. Met. 138, 491–495 (2003)

    Article  Google Scholar 

  51. A. Farag, I. Yahia, Rectification and barrier height inhomogeneous in Rhodamine B based organic Schottky diode. Synth. Met. 161, 32–39 (2011)

    Article  Google Scholar 

  52. M.S. Zoromba, M. Abdel-Aziz, M. Bassyouni, H. Bahaitham, A. Al-Hossainy, Poly (o-phenylenediamine) thin film for organic solar cell applications. J. Solid-State Electrochem. 22, 3673–3687 (2018)

    Article  Google Scholar 

  53. M. El-Nahass, H.A. El-Khalek, A. Nawar, Structural and optical characterizations of Ni (II) tetraphenyl porphyrin thin films. Eur. Phys. J. Appl. Phys. 57, 30201 (2012)

    Article  Google Scholar 

  54. F. Yakuphanoglu, M. Sekerci, O. Ozturk, the determination of the optical constants of Cu (II) compound having 1-chloro-2, 3-o-cyclohexylidinepropane thin film. Optics Commun. 239, 275–280 (2004)

    Article  Google Scholar 

  55. K. Parida, L. Mohapatra, N. Baliarsingh, Effect of Co2+ substitution in the framework of carbonate intercalated Cu/Cr LDH on structural, electronic, optical, and photocatalytic properties. J. Phys. Chem. C 116, 22417–22424 (2012)

    Article  Google Scholar 

  56. N. Baliarsingh, L. Mohapatra, K. Parida, Design and development of a visible light harvesting Ni–Zn/Cr–CO 3 2-LDH system for hydrogen evolution. J. Mater. Chem. A 1, 4236–4243 (2013)

    Article  Google Scholar 

  57. S.A. Khan, S.B. Khan, A.M. Asiri, Toward the design of Zn–Al and Zn–Cr LDH wrapped in activated carbon for the solar assisted de-coloration of organic dyes. RSC Adv. 6, 83196–83208 (2016)

    Article  Google Scholar 

  58. Š. Paušová, J. Krýsa, J. Jirkovský, C. Forano, G. Mailhot, V. Prevot, Insight into the photocatalytic activity of ZnCr–CO3 LDH and derived mixed oxides. Appl. Catal. B 170, 25–33 (2015)

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge financial support from the Deanship of Scientific Research (DSR), Northern Border University (NBU), Kingdom of Saudi Arabia (KSA) (SCI-2017-1-8-F-7238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed F. Al-Hossainy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hossainy, A.F., Ibrahim, A. & Zoromba, M.S. Synthesis and characterization of mixed metal oxide nanoparticles derived from Co–Cr layered double hydroxides and their thin films. J Mater Sci: Mater Electron 30, 11627–11642 (2019). https://doi.org/10.1007/s10854-019-01520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01520-9

Navigation