Skip to main content
Log in

Synthesis, Characterization of (Fe, Sn) Doped and Co-Doped Copper Oxide Nanoparticles and Evaluation of their Antibacterial Activities

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Undoped, Fe, Sn doped and Fe/Sn co-doped copper oxides are prepared by precipitation synthesis. X-ray diffraction confirmed that the all synthesized powders show a monoclinic main CuO phase. The insertion of Fe or/and Sn within the CuO matrix moderately affects the preferential growth direction. Basically Fourier Transform Infrared (FTIR) confirmed about functional group and their vibrations in the CuO samples. The reflectance of the undoped sample is higher than that of the other samples. Compared to undoped CuO, the doped and co-doped NPs exhibit red-shifted gap energy. Indeed, the Fe-doped, and Sn-doped CuO NPs, exhibit a slight decrease of gap energy (1.47, 1.45 eV respectively) compared to the undoped CuO (1.49 eV), while the Fe/Sn co-doped sample has a lower gap energy of 1.06 eV.

Additionally, the antibacterial efficiencies of the all-synthesized samples are tested against Staphyloccus species. Doped and undoped CuO nanopowders show important antibacterial activity on tested bacteria with MICs values ranged between 0.039 to 1.25 mg/ml. Minimum Inhibitory Concentration value of 0.039 mg/ml was obtained with Fe-doped CuO NPs (CuO:Fe NPs) against S.aureus ATCC33591, whereas the highest MIC value of 1.25 mg/ml was obtained with CuO:Sn nanopowder against the strain S. epidermidis, which was the most resistant strain. Moreover, all CuO NPs, except CuO:Fe/Sn showed important anti-adhesive and antibacterial activities against S. epidermidis when used as pellets. This was confirmed either by cell counts using the determination of CFU/ml of bacterial suspension inside the hole, or by using fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

No supplementary data, all data are presented in the manuscript.

References

  1. H. N. Cuong, S. Pansambal, S. Ghotekar, R. Oza, N. T. T. Hai, N. M. Viet, and V. Nguyen (2022). A review Environ Res 203, 111858. https://doi.org/10.1016/j.envres.2021.111858.

    Article  CAS  PubMed  Google Scholar 

  2. M. E. Davey and G. A. O. Toole (2000). Microbiology and Molecular Biology Reviews 64 (4), 847–867. https://doi.org/10.1128/MMBR.64.4.847-867.2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. G. Ren, D. Hu, E. W. C. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker (2009). International Journal of Antimicrobial Agents 33 (6), 587–590.

    Article  CAS  PubMed  Google Scholar 

  4. Y.-W. Baek and Y.-J. An (2011). The Science of the Total Environment 409 (8), 1603–1608. https://doi.org/10.1016/j.scitotenv.2011.01.014.

    Article  CAS  PubMed  Google Scholar 

  5. A.-P. Magiorakos, A. Srinivasan, R. B. Carey, Y. Carmeli, M. E. Falagas, C. G. Giske, S. Harbarth, J. F. Hindler, G. Kahlmeter, B. Olsson-Liljequist, D. L. Paterson, L. B. Rice, J. Stelling, M. J. Struelens, A. Vatopoulos, J. T. Weber, and D. L. Monnet (2012). Clinical Microbiology and Infection 18 (3), 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.

    Article  CAS  PubMed  Google Scholar 

  6. T.C. Horan , R.P. Gaynes (2004). Surveillance of nosocomial infections. In: Mayhall CG, editor. Hospital Epidemiology and Infection Control, (3rd ed. Lippincott Williams & Wilkins; Philadelphia), p. 1659–1702

  7. L. A. Grohskopf, R. L. Sinkowitz-Cochran, D. O. Garrett, A. H. Sohn, G. L. Levine, J. D. Siegel, B. H. Stover, and W. R. Jarvis (2002). J Pediatr 140, 432–438. https://doi.org/10.1067/mpd.2002.122499.

    Article  PubMed  Google Scholar 

  8. N. L. Rosi and C. A. Mirkin (2005). Chem Rev 105, 1547–1562. https://doi.org/10.1021/cr030067f.

    Article  CAS  PubMed  Google Scholar 

  9. KR. Raghupati, RT. KOOdali, AC. Manna (2011). Langmuir, 27, 4020-4028. doi.org/https://doi.org/10.1021/la104825u.

  10. K. Lewis and A. M. Klibanov (2005). Trends Biotechnol 23, 343–348. https://doi.org/10.1016/j.tibtech.2005.05.004.

    Article  CAS  PubMed  Google Scholar 

  11. S. Saleem, A. H. Jabbar, M. H. Jameel, A. Rehman, Z. H. Kareem, A. H. Abbas, Z. Ghaffar, S. A. Razzaq, R. A. Pashameah, E. Alzahrani, Eng-Poh Ng, and S. M. Sapuan (2022). Nanotechnology Reviews 11, 2827–2838. doi.org/https://doi.org/10.1515/ntrev-2022-0473.

  12. S. Saleem, M. Irfan ,M. Y. Naz, S. Shukrullah, M. A. Munir, M. Ayyaz, A. S. Alwadie, S. Legutko, J. Petrů and S. Rahman (2022). materials 15 (10), 3502. doi.org/https://doi.org/10.3390/ma15103502.

  13. N. Tran, A. Mir, D. Mallik, A. Sinha, S. Nayar, and T. J. Webster (2010). Int J Nanomedecine 5, 277–283. https://doi.org/10.2147/ijn.s9220.

    Article  CAS  Google Scholar 

  14. G. Applerot, J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken, and E. Banin (2012). Small 8 (21), 3326–3337. https://doi.org/10.1002/smll.201200772.

    Article  CAS  PubMed  Google Scholar 

  15. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang (2014). Prog. in Mater Sc 60, 208–337. https://doi.org/10.1016/j.pmatsci.2013.09.003.

    Article  CAS  Google Scholar 

  16. O. Mahapatra, M. Bhagat, C. Gopalakrishnan, and K. D. Arunachalam (2008). J ExpNanosci 3, 185–193. https://doi.org/10.1080/17458080802395460.

    Article  CAS  Google Scholar 

  17. A. Bhattacharjee and M. Ahmaruzzaman (2016). RSC Adv 6 (47), 41348–41363. https://doi.org/10.1039/C6RA03624D.

    Article  CAS  Google Scholar 

  18. H. Qamar, S. Rehman, D. K. Chauhan, A. K. Tiwari, V. Upmanyu, (2020), Inter.J.Nanomed, 15, 2541–2553. https://doi.org/10.2147/IJN.S240232

  19. P. Bhavyasree and T. Xavier (2022). Curr. Res. Green Sustainable Chem 5, 100249. https://doi.org/10.1016/j.crgsc.2021.100249

  20. C. Tijo, A. Khursheed, S. Quaiser, M. Faisal, W. Rizwan, and M. Javed (2020). Biomolecules 10, 169. https://doi.org/10.3390/biom10020169.

    Article  CAS  Google Scholar 

  21. V. Gnanavel, V. Palanichamy, and S. M. Roopan (2017). J. Photochem. Photobiol. B 171, 133–138. https://doi.org/10.1016/j.jphotobiol.2017.05.001.

    Article  CAS  PubMed  Google Scholar 

  22. M. Ahamed, H. A. Alhadlaq, M. A. Majeed Khan, Ponmurugan Karuppiah, and Naif A. Al-Dhabi (2014), J. Nanomater. https://doi.org/10.1155/2014/637858.

  23. N. Khlifi, S. Mnif, F. Ben Nasr, N. Fourati, C. Zerrouki, M. M. Chehimi, H. Guermazi, S. Aifa, and S. Guermazi (2022). RSC Adv 12, 23527–23543. https://doi.org/10.1039/D2RA02433K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A. Pugazhendhi, S. S. Kumar, M. Manikandan, and M. Saravanan (2018). Microbial Pathogenesis. https://doi.org/10.1016/j.micpath.2018.06.016.

    Article  PubMed  Google Scholar 

  25. P. Venkateswaria, P. Thirunavukkarasua, T. Sivakumar, and G. Sankar (2019). IOSR J. of Eng 9, 51–60.

    Google Scholar 

  26. S. Saleem, M. H. Jameel, A. A. Alothman, M. Z. Hilmi, B. Mayzan, T. Yousaf, M. R. Ahmad, A. Ali, and A. Zaman (2023). J Sol-Gel Sci and Tech. https://doi.org/10.1007/s10971-023-06287-4.

    Article  Google Scholar 

  27. M. Fterich, F. Ben Nasr, R. Lefi, M. Toumi, and S. Guermazi (2016). Mater. Sci Semicond Process 43, 114–122. https://doi.org/10.1016/j.mssp.2015.11.023.

    Article  CAS  Google Scholar 

  28. C. Satari, R. S. Sidqi, R. F. Putra, S. R. Putri, A. B. DaniNandiyanto (2021). Inter J.Energetica (IJECA), 6, 21-34. https://www.ijeca.info.

  29. J.M. Simard (2007). Synthesis of gold nanoparticles for biomacromolecular recognition (Doctoral Dissertations). https://scholarworks.umass.edu/dissertations/AAI3275799

  30. M. R. Arefi and S. R. Zarchi (2012). International journal of Molecular Sciences 13, 4340–4350. https://doi.org/10.3390/ijms13044340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. Gross, S. Sayle, A. R. Karow, U. Bakowsky, and P. Garidel (2016). Eur. J. Pharm. Biopharm 104, 30–41. https://doi.org/10.1016/j.ejpb.2016.04.013.

    Article  CAS  PubMed  Google Scholar 

  32. M. Jardak, A. Atoissi, D. Msalbi, D. Atoui, B. Bouizgarne, G. Rigane, R. Ben Salem, S. Aifa, and S. Mnif (2022). Center Microbial Pathogenesis 164, 105449. https://doi.org/10.1016/j.micpath.2022.105449.

    Article  CAS  PubMed  Google Scholar 

  33. J. A. Bearden and A. Burr (1967). Rev. Mod. Phys 39, 125. https://doi.org/10.1103/RevModPhys.39.125.

    Article  CAS  Google Scholar 

  34. K. Martin and G. McCarthy (1990). North Dakota State Univ, Fargo, ND, USA. ICDD Grant-in-Aid (1991). Structure. J. Solid State Chem 89, 184.

    Google Scholar 

  35. S. Singhal, J. Kaur, T. Namgyal, R. Sharma (2012). Phys. B, 407, 1223–1226. doi. org/https://doi.org/10.1016/j.physb.2012.01.103

  36. M. Rabiei, A. Palevicius, A. Monshi, S. Nasiri, A. Vilkauskas, and G. Janusas (2020). Nanomater. 10, 1627. https://doi.org/10.3390/nano10091627.

    Article  CAS  Google Scholar 

  37. G. K. Williamson and W. H. Hall (1953). Acta Metall 1, 22–31. https://doi.org/10.1016/0001-6160(53)90006-6.

    Article  CAS  Google Scholar 

  38. S. Kahraman, H. A. Çetinkara, F. Bayansal, H. M. Çakmak, and H. S. Güder (2012). Philos. Mag 92, 2150–2163. https://doi.org/10.1080/14786435.2012.669064.

    Article  CAS  Google Scholar 

  39. S. Muthukumaran and R. Gopalakrishnan (2012). Opt. Mater 34, 1946–1953.

    Article  CAS  Google Scholar 

  40. A. T. Ravichandran, K. C. AtherineSiriyaPushpa, K. Ravichandran, K. Karthika, B. M. Nagabhushana, S. Mantha, and K. Swaminathan (2014). Superlattice. Microst 75, 533–542. https://doi.org/10.1016/j.spmi.2014.08.009.

    Article  CAS  Google Scholar 

  41. S. Saleem, M. N. Ashiq , S. Manzoor , U. Ali, R. Liaqat, A. Algahtani, S. Mujtaba, V. Tirth, A. M. Alsuhaibani, M. S. Refat, A. Ali, M. Aslam, A. Zaman (2023). Journal of materials research and technology, 25, 6150-6166. https://doi.org/10.1016/j.jmrt.2023.07.065

  42. B. K. Ku, P. Kulkarni (2012). J. Aerosol Sci, 47, 100–110. https://doi.org/10.1016/2Fj.jaerosci.2012.01.002

  43. L. Dörner, C. Cancellieri, B. Rheingans, M. Walter, R. Kägi, P. Schmutz, M. Kovalenko ,Lars P. H. Jeurgens (2019). Scientific Reports, 9, 11758. https://doi.org/10.1038/s41598-019-48020-8

  44. O. P. Keabadile, A. O. Aremu, S. E. Elugoke and O. E. Fayemi (2020) Nanomater. https://doi.org/10.3390/nano10122502

  45. M. U. AnnPrathap, B. Kaur, R. Srivastava (2012). J. Colloid Interface Sci, 381(1), 143-151. https: // doi .org/https://doi.org/10.1016/j.jcis.2012.05.025.

  46. K. Ghenadii, H. Sang Do, C. Beongki, and T. Valeri (2009). Processing and Application of Ceramics 3 (1–2), 19–28.

    Google Scholar 

  47. S. Adil, A. Nafees, S. Saima, S. Suhail, and M. Zain Khan (2019). ACS Omega 4, 12905–12918. https://doi.org/10.1021/acsomega.9b01261.

    Article  CAS  Google Scholar 

  48. P. K. Raul, S. Senapati, A. K. Sahoo, I. M. Umlong, Ri. R. Devi, A. J. Thakur, and V. Veer (2014). RSC Adv 4, 40580. https://doi.org/10.1039/c4ra04619f.

    Article  CAS  Google Scholar 

  49. N. Wang, H. caiHe, L. Han (2010). Appl. Surf. Sci, 256 (23), 7335-7338. https: // doi. org/https://doi.org/10.1016/j.apsusc.2010.05.029

  50. N. Tounsi, A. Barhoumi, F. C. Akkari, M. Kanzari, H. Guermazi, S. Guermazi. (2015).Vacuum, 121, 9-17. https://doi.org/10.1016/j.vacuum.2015.07.011.

  51. S. Sonia, I. Jose Annsi, P. Suresh Kumar, D. Mangalaraj, C. Viswanathan, and N. Ponpandian (2015). Mater. Lett. 144, 127–130. https://doi.org/10.1016/j.matlet.2015.01.026.

    Article  CAS  Google Scholar 

  52. S. Landi Jr., I. R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, and C. J. Tavares (2022). Solid State Comm 341, 114573. https://doi.org/10.1016/j.ssc.2021.114573.

    Article  CAS  Google Scholar 

  53. S. Fabbiyola, L. Kennedy, A. A. Dakhel, M. Bououdina, J. Vijaya, and T. Ratnaji (2016). Journal of Molecular Structure 1109, 89–96. https://doi.org/10.1016/j.molstruc.2015.12.071.

    Article  CAS  Google Scholar 

  54. A. N. Banerjee, K. K. Chattopadhyay,D. Depla , S. Maheiu (2008). In: Reactive Sputter Deposition, (Springer-Verlag Berlin Heidelberg), p. 465.

  55. J. Tauc (1974). Amorphous and Liquid Semiconductors, (Plenum Press, London & New York) https://doi.org/10.1007/978-1-4615-8705-7

  56. H. Jdidi, N. Fourati, C. Zerrouki, L. Ibos, M. Fois, A. Guinault, W. Jilani, S. Guermazi, and H. Guermazi (2021). Polymer 228, 123882. https://doi.org/10.1016/j.polymer.2021.123882.

    Article  CAS  Google Scholar 

  57. P. Rani, A. Gupta, S. Kaur, V. Singh, S. Kumar, and Dinesh Kumar (2016). American Institute of Physics. 1728, id 020057. https://doi.org/10.1063/1.4946108.

    Article  Google Scholar 

  58. F. Urbach (1953). J. Phys. Rev. 92, 1324. https://doi.org/10.1103/PhysRev.92.1324.

    Article  CAS  Google Scholar 

  59. B. Abay, S. H. Güder, H. Efeoglu, and K. Y. Yogurtçu (2001). Turk. J. Phys 25, 543–549.

    CAS  Google Scholar 

  60. H. Mahr (1962). Phys. Rev 125, 1510. https://doi.org/10.1103/PhysRev.125.1510.

    Article  CAS  Google Scholar 

  61. C. Gao, H. Shen, and L. Sun (2011). Applied Surface Science 257, 6750–6755. https://doi.org/10.1016/j.apsusc.2011.02.116.

    Article  CAS  Google Scholar 

  62. G. N. S. Vijayakumar, M. Rathnakumari, and P. Sureshkumar (2011). Arch. Appl. Sci. Res 3, 514–525.

    Google Scholar 

  63. J. I. Pankove (1975). Optical Processes in Semiconductors, (Dover Publications, Inc, New York).

  64. K. Takenaka, Y. Imanaka, K. Tamasaku, T. Ito, and S. Uchida (1992). Phys Rev B 46, 5833(R).

    Article  Google Scholar 

  65. H. Weiwei, K. Hyun-Kyung, W. G. Wamer, M. David, J. H. Callahan, and Y. Jun-Jie (2014). J Am Chem Soc 136 (2), 750–757. https://doi.org/10.1021/ja410800y.

    Article  CAS  Google Scholar 

  66. U. Kadiyala, A. Nicholas, J. S. Kotov, and V. Eppsa (2018). Curr Pharm Des, 24 (8), 896–903. https://doi.org/10.2174/1381612824666180219130659.

    Article  CAS  PubMed  Google Scholar 

  67. Ameer Azam, Arham S. Ahmed, M. Oves, M. S. Khan, and Adnan Memic (2012). Journal of Nanomedicine. 7, 3527–3535. https://doi.org/10.2147/ijn.s29020.

    Article  CAS  Google Scholar 

  68. M. Amiri, Z. Etemadifar, A. Daneshkazemi, and M. Nateghi (2017). Antimicrobial Effect of Copper Oxide NPs on Some Oral Bacteria and Candida Species 4 (1), 347–352.

    CAS  Google Scholar 

  69. Munin Agarwala, Bula Choudhury, and R. N. S. Yadav (2014). Indian J Microbiol 54 (3), 365–368. https://doi.org/10.1007/s12088-014-0462-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. A. Pugazhendhi, S. Kumar, M. Manikandan, and M. Saravanan (2018). Microbial pathogenesis 122, 84–89. https://doi.org/10.1016/j.micpath.2018.06.016.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank the financial support of the Tunisian Ministry of High Education and ScientificResearch.

Funding

This work was funded by Tunisian Ministry of High Education and Scientific Research

Author information

Authors and Affiliations

Authors

Contributions

F.B and H.G: writing and evaluation... S.M and S.A: Completion of biological experiments... B.D and G.L: characterization experiments... S.G: reviewed

Corresponding author

Correspondence to Ferid Ben Nasr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

We Participants in writing the manuscript declare thatthis manuscript is original, has not been publishedbefore and is not currently being considered forpublication elsewhere. We confirm that the manuscript has been read and approved by all namedauthors and that there are no other persons whosatisfied the criteria for authorship but are not listed.We further confirm that the order of authors listed inthe manuscript has been approved by all of us. Weunderstand that the Corresponding Author is the solecontact for the Editorial process. He is responsiblefor communicating with the other authors aboutprogress, submissions of revisions and final approvalof proofs.

Research involving Human Participants and/or Animals

No Human or animal participants are involved.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Nasr, F., Mnif, S., Guermazi, H. et al. Synthesis, Characterization of (Fe, Sn) Doped and Co-Doped Copper Oxide Nanoparticles and Evaluation of their Antibacterial Activities. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02613-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02613-0

Keywords

Navigation