Skip to main content
Log in

Electrochemical sensor based on conductive polyaniline coated hollow tin oxide nanoparticles and nitrogen doped graphene quantum dots for sensitively detecting dopamine

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The hollow tin(IV) oxide (SnO2) nanoparticles prepared using a simple hydrothermal synthesis were served as a core for the fabrication of SnO2/polyaniline (PANI) nanocomposites using in situ chemical oxidative polymerization. The chemical and structure of the nanocomposites were characterized using Fourier transform infrared, X-ray diffraction, and transmission electron microscopy. The nanocomposites were then coated with nitrogen doped graphene quantum dots (N-GQDs) obtained by hydrothermal synthesis through electrostatic interaction. The catalytic behavior of nanocomposites modified glass carbon electrode towards dopamine (DA) has been investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry and differential pulse voltammetry. The EIS test for prepared SnO2/PANI/N-GQD nanocomposites shows the very low charge-transfer resistance. The electrochemical performance of SnO2/PANI/N-GQD nanocomposites present the large peak currents, indicating the nanocomposites reveal better electrochemical activity of the presence of N-GQD. The SnO2/PANI/N-GQD nanocomposites contained linear response of detecting DA in the concentration range of 5 × 10−7–2 × 10−4 M with detection limit 2.2 × 10−7 M (S/N = 3). The fabricated nanocomposites also show excellent determination of DA at the presence of a mixture of l-ascorbic acid and uric acid. Because of the excellent electrochemical performance obtained in this report, we believe that the SnO2/PANI/N-GQD nanocomposites will be a promising biosensor material for the detection of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.L. Robinson, A. Hermans, A.T. Seipel, R.M. Wightman, Monitoring rapid chemical communication in the brain. Chem. Rev. 108, 2554–2584 (2008)

    Article  Google Scholar 

  2. A. Abbaspour, A. Khajehzadeh, A. Ghaffarinejad, A simple and cost-effective method as an appropriate alternative for visible spectrophotometry: development of a dopamine biosensor. Analyst 134, 1692–1698 (2009)

    Article  Google Scholar 

  3. Y. Lin, C. Chen, C. Wang, F. Pu, J. Ren, X. Qu, Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction. Chem. Commun. 47, 1181–1183 (2011)

    Article  Google Scholar 

  4. V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb, A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine, and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures. J. Chromatogr. B 847, 88–94 (2007)

    Article  Google Scholar 

  5. M. Liu, Q. Chen, C. Lai, Y. Zhang, J. Deng, H. Li, S. Yao, A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe3O4@Au nanoparticles with graphene sheet. Biosens Bioelectron 48, 75–81 (2013)

    Article  Google Scholar 

  6. E. Canbay, E. Akyilmaz, Design of a multiwalled carbon nanotube–Nafion–cysteamine modified tyrosinase biosensor and its adaptation of dopamine determination. Anal. Biochem. 444, 8–15 (2014)

    Article  Google Scholar 

  7. W. Zhang, R. Yuan, Y.Q. Chai, Y. Zhang, S.H. Chen, A simple strategy based on lanthanum–multiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Sensors Actuators B 166, 601–607 (2012)

    Article  Google Scholar 

  8. H. Zhu, W. Wu, H. Zhang, L. Fan, S. Yang, Highly selective and sensitive detection of dopamine in the presence of excessive ascorbic acid using electrodes modified with C60-functionalized multiwalled carbon nanotube film. Electroanalysis 21, 2660–2666 (2009)

    Article  Google Scholar 

  9. Y. Li, L. Zhang, M. Li, Z. Pan, D. Li, A disposable biosensor based on immobilization of laccase with silica spheres on the MWCNTs doped screen-printed electrode. Chem. Cent. J. 6, 103 (2012)

    Google Scholar 

  10. K. Min, Y.J. Yoo, Amperometric detection of dopamine based on tyrosinase-SWNTs-PPy composite electrode. Talanta 80, 1007–1011 (2009)

    Article  Google Scholar 

  11. Z.H. Sheng, X.Q. Zheng, J.Y. Xu, W.J. Bao, F.B. Wang, X.H. Xia, Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34, 125–131 (2012)

    Article  Google Scholar 

  12. C. Xiao, X. Chu, Y. Yang, X. Li, X. Zhang, J. Chen, Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine. Biosens Bioelectron 26, 2934–2939 (2011)

    Article  Google Scholar 

  13. X. Zhou, P. Ma, A. Wang, C. Yu, T. Qian, S. Wu, J. Shen, Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids. Biosens Bioelectron 64, 404–410 (2015)

    Article  Google Scholar 

  14. S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 47, 6858–6860 (2011)

    Article  Google Scholar 

  15. J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686–3699 (2012)

    Article  Google Scholar 

  16. L.S. Li, X. Yan, Colloidal graphene quantum dots. J. Phys. Chem. Lett. 1, 2572–2576 (2010)

    Article  Google Scholar 

  17. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, P.M. Ajayan, Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844–849 (2012)

    Article  Google Scholar 

  18. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6, 5102–5110 (2012)

    Article  Google Scholar 

  19. C. Zhou, W. Jiang, B.K. Via, Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions. Colloids Surf. B 118, 72–76 (2014)

    Article  Google Scholar 

  20. J.J. Liu, Z.T. Chen, D.S. Tang, Y.B. Wang, L.T. Kang, J.N. Yao, Graphene quantum dots-based fluorescent probe for turn-on sensing of ascorbic acid. Sensors Actuators B 212, 214–219 (2015)

    Article  Google Scholar 

  21. J. Zhao, G. Chen, L. Zhu, G. Li, Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem. Commun. 13, 31–33 (2011)

    Article  Google Scholar 

  22. H.T. Liu, Y.Q. Liu, D.B. Zhu, Chemical doping of graphene. J. Mater. Chem. 21, 3335–3345 (2011)

    Article  Google Scholar 

  23. K.P. Gong, F. Du, Z.H. Xia, M. Durstock, L.M. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760 (2009)

    Article  Google Scholar 

  24. Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134, 15–18 (2012)

    Article  Google Scholar 

  25. P. Manivel, M. Dhakshnamoorthy, A. Balamurugan, N. Ponpandian, D. Mangalaraj, C. Viswanathan, Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. RSC Adv 3, 14428–14437 (2013)

    Article  Google Scholar 

  26. Z.M. Tahir, E.C. Alocilja, D.L. Grooms, Polyaniline synthesis and its biosensor application. Biosens Bioelectron 20, 1690–1695 (2005)

    Article  Google Scholar 

  27. T.M. Wu, Y.W. Lin, C.S. Liao, Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 43, 734–740 (2005)

    Article  Google Scholar 

  28. Z. Miao, P. Wang, A. Zhong, M. Yang, Q. Xu, S. Hao, X. Hu, Development of a glucose biosensor based on electrodeposited gold nanoparticles-polyvinylpyrrolidone-polyaniline nanocomposites. J Electroanal Chem 756, 153–160 (2015)

    Article  Google Scholar 

  29. Ghanbari KH, Babaei Z, Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Anal. Biochem. 498, 37–46 (2016)

    Article  Google Scholar 

  30. Y. Xie, S. Yu, Y. Zhong, Q. Zhang, Y. Zhou, SnO2/graphene quantum dots composited photocatalyst for efficient nitric oxide oxidation under visible light. Appl Surf Sci 448, 655–661 (2018)

    Article  Google Scholar 

  31. A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors. Mater Sci Eng B 176, 1409–1421 (2011)

    Article  Google Scholar 

  32. J.F. Qian, P. Liu, Y. Xiao, Y. Jiang, Y.L. Cao, X.P. Ai, H.X. Yang, TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv Mater 21, 3663–3667 (2009)

    Article  Google Scholar 

  33. N. Wang, X. Cao, Guo, Facile one-pot solution phase synthesis of SnO2 nanotubes. J. Phys. Chem. C 112, 12616–12622 (2008)

    Article  Google Scholar 

  34. W. Wu, S. Zhang, J. Zhou, X. Xiao, F. Ren, C. Jiang, Controlled synthesis of monodisperse sub-100 nm hollow SnO2 nanospheres: a template- and surfactant-free solution-phase route, the growth mechanism, optical properties, and application as a photocatalyst. Chem. Eur. J. 17, 9708–9719 (2011)

    Article  Google Scholar 

  35. Y.N. Hao, H.L. Guo, L. Tian, X. Kang, Enhanced photoluminescence of pyrrolic-nitrogen enriched graphene quantum dots. RSC Adv 5, 43750–43755 (2015)

    Article  Google Scholar 

  36. H.J. Wang, F.Q. Sun, Y. Zhang, L.S. Li, H.Y. Chen, Q.S. Wu, J.C. Yu, Photochemical growth of nanoporous SnO2 at the air-water interface and its high photocatalytic activity. J. Mater. Chem. 20, 5641–5645 (2010)

    Article  Google Scholar 

  37. Y.C. Lin, F.H. Hsu, T.M. Wu, Enhanced conductivity and thermal stability of conductive polyaniline/graphene composite synthesized by in situ chemical oxidation polymerization with sodium dodecyl sulfate. Synth. Met. 184, 29–34 (2013)

    Article  Google Scholar 

  38. H.K. Chaudhari, D.S. Kelkar, Investigation of structure and electrical conductivity in doped polyaniline. Polym Int 42, 380–384 (1997)

    Article  Google Scholar 

  39. J. Wang, Y. Li, J. Ge, B.P. Zhang, W. Wan, Improving photocatalytic performance of ZnO via synergistic effects of Ag nanoparticles and graphene quantum dots. Phys. Chem. Chem. Phys. 17, 18645–18652 (2015)

    Article  Google Scholar 

  40. Y. Li, Y. Jiang, T. Mo, H. Zhou, Y. Li, S. Li, Highly selective dopamine sensor based on graphene quantum dots self-assembled monolayers modified electrode. J Electroanal Chem 767, 84–90 (2016)

    Article  Google Scholar 

  41. M. Bagherzadeh, S.A. Mozaffari, M. Momeni, Fabrication and electrochemical characterization of dopamine-sensing electrode based on modified graphene nanosheets. Anal. Methods 7, 9317–9323 (2015)

    Article  Google Scholar 

  42. K.J. Huang, J.Z. Zhang, Y.J. Liu, L.L. Wang, Novel electrochemical sensing platform based on molybdenum disulfide nanosheets-polyaniline composites and Au nanoparticles. Sensors Actuators B 194, 303–310 (2014)

    Article  Google Scholar 

  43. L. Liu, S. Li, L. Liu, D. Deng, N. Xia, Simple, sensitive and selective detection of dopamine using dithiobis (succinimidyl propionate)-modified gold nanoparticles as colorimetric probes. Analyst 137, 3794–3799 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Technology (MOST) under Grand MOST 107-2212-E-005-020 and the Ministry of Education under the project of Innovation and Development Center of Sustainable Agriculture (IDCSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzong-Ming Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, WF., Wu, TM. Electrochemical sensor based on conductive polyaniline coated hollow tin oxide nanoparticles and nitrogen doped graphene quantum dots for sensitively detecting dopamine. J Mater Sci: Mater Electron 30, 8449–8456 (2019). https://doi.org/10.1007/s10854-019-01165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01165-8

Navigation