Skip to main content

Advertisement

Log in

Low temperature processing of BaTiO3-PMMA-PVP hybrid films as transparent dielectric gate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transparent thin films based on nanocomposites of BaTiO3, (PMMA) and poly (4-vinylphenol) (PVP) are synthesized and deposited on fluorine doped tin oxide (FTO) coated glass substrate by spin coating technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) are applied to investigate the chemical bonds and structural properties of the samples. The optical transmittance and reflectance of nanocomposite films are investigated in the 200–900 nm wavelength range. The calculation of optical band gaps of thin films showed that the thin film has directly allowed transition with the values from 3.3 eV to 3.4 eV. Dispersion parameters are calculated based on the single oscillator model. The important parameters such as dispersion energy, oscillator energy and lattice dielectric constant are extracted for thin film. The electrical properties such as capacitance and electrical behavior are investigated for sample. The obtained results of nanocomposite thin films can be useful for using in transparent organic thin film transistor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.H. Na, M. Kitamura, Y. Arakawa, Low-voltage-operating organic complementary circuits based on pentacene and C60 transistors. Thin Solid Films 517(6), 2079–2082 (2009)

    Article  CAS  Google Scholar 

  2. H. Chen et al., Highly pi-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv. Mater. 24(34), 4618–4622 (2012)

    Article  CAS  Google Scholar 

  3. J.W. Jung et al., A high mobility conjugated polymer based on dithienothiophene and diketopyrrolopyrrole for organic photovoltaics. Energy Environ. Sci. 5(5), 6857–6861 (2012)

    Article  Google Scholar 

  4. J.A. Jiménez Tejada et al., Contact effects in compact models of organic thin film transistors: application to zinc phthalocyanine-based transistors. Org. Electron. 12(5), 832–842 (2011)

    Article  Google Scholar 

  5. Y. Fujisaki et al., Transparent nanopaper-based flexible organic thin-film transistor array. Adv. Func. Mater. 24(12), 1657–1663 (2014)

    Article  CAS  Google Scholar 

  6. K. Amer et al., Fabrication, characterization, and electrical measurements of gas ammonia sensor based on organic field effect transistor. J. Mater. Sci. 30(1), 391–400 (2019)

    Google Scholar 

  7. L. Zhang et al., Low-temperature solution-processed alumina dielectric films for low-voltage organic thin film transistors. J. Mater. Sci. 26(9), 6639–6646 (2015)

    CAS  Google Scholar 

  8. M. Shahbazi, A. Bahari, S. Ghasemi, Structural and frequency-dependent dielectric properties of PVP–SiO 2–TMSPM hybrid thin films. Org. Electron. 32, 100–108 (2016)

    Article  CAS  Google Scholar 

  9. M.D. Morales-Acosta, M.A. Quevedo-López, R. Ramírez-Bon, PMMA–SiO2 hybrid films as gate dielectric for ZnO based thin-film transistors. Mater. Chem. Phys. 146(3), 380–388 (2014)

    Article  CAS  Google Scholar 

  10. S. Demirezen, Frequency- and voltage-dependent dielectric properties and electrical conductivity of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes at room temperature. Appl. Phys. A 112(4), 827–833 (2013)

    Article  CAS  Google Scholar 

  11. S. Lee et al., Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance. Appl. Phys. Lett. 88(16), 162109 (2006)

    Article  Google Scholar 

  12. C.C. Shih et al., High performance transparent transistor memory devices using nano-floating gate of polymer/ZnO nanocomposites. Sci. Rep. 6, 20129 (2016)

    Article  CAS  Google Scholar 

  13. J. Kim et al., Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures. Adv. Mater. 27(21), 3292–3297 (2015)

    Article  CAS  Google Scholar 

  14. V. Benfenati et al., A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12(7), 672–680 (2013)

    Article  CAS  Google Scholar 

  15. T. Georgiou et al., Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100–103 (2013)

    Article  CAS  Google Scholar 

  16. T.Q. Trung et al., Flexible and transparent nanocomposite of reduced graphene oxide and P(VDF-TrFE) copolymer for high thermal responsivity in a field-effect transistor. Adv. Func. Mater. 24(22), 3438–3445 (2014)

    Article  CAS  Google Scholar 

  17. T. Marszalek et al., Transparent and air stable organic field effect transistors with ordered layers of dibenzo[d,d]thieno[3,2-b;4,5-b0]dithiophene obtained from solution. Opt. Mater. 34, 1660–1663 (2012)

    Article  CAS  Google Scholar 

  18. Y. Yu et al., Gate dielectric ion implantation to modulate the threshold voltage of In2O3 nanowire field effect transistors. Appl. Phys. Lett.. 109(19), 193505 (2016)

    Article  Google Scholar 

  19. P.-K. Yang et al., Fully transparent resistive memory employing graphene electrodes for eliminating undesired surface effects. Proc. IEEE, 101(7), 1732–1739 (2013)

    Article  CAS  Google Scholar 

  20. I. Isakov et al., Exploring the leidenfrost effect for the deposition of high-Quality In2O3 layers via spray pyrolysis at low temperatures and their application in high electron mobility transistors. Adv. Funct. Mater. 27(22), 1606407 (2017)

    Article  Google Scholar 

  21. P. Firek, A. Werbowy, J. Szmidt, MIS field effect transistor with barium titanate thin film as a gate insulator. Mater. Sci. Eng. 165(1–2), 126–128 (2009)

    Article  CAS  Google Scholar 

  22. C. Dagdeviren et al., Transient, biocompatible electronics and energy harvesters based on ZnO. Small 9(20), 3398–3404 (2013)

    Article  CAS  Google Scholar 

  23. E.N. Dattoli et al., Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Lett. 7(8), 2463–2469 (2007)

    Article  CAS  Google Scholar 

  24. H. Najafi–Ashtiani, Performance evaluation of free-silicon organic-inorganic hybrid (SiO2-TiO2PVP) thin films as a gate dielectric. Appl. Surf. Sci. 455, 373–378 (2018)

    Article  Google Scholar 

  25. Jhih-Jie, Huang et al., Enhancement of electrical characteristics and reliability in crystallized ZrO2 gate dielectrics treated with in-situ atomic layer doping of nitrogen. Appl. Surf. Sci. 305, 214–220 (2014)

    Article  Google Scholar 

  26. A. Kumar, S. Mondal, K.S.R.K. Rao, Low temperature solution processed high-k ZrO2 gate dielectrics for nanoelectonics. Appl. Surf. Sci. 370, 373–379 (2015)

    Article  Google Scholar 

  27. H.-W. Park et al., Low temperature processed InGaZnO thin film transistor using the combination of hydrogen irradiation and annealing. Appl. Surf. Sci. 321, 520–524 (2014)

    Article  CAS  Google Scholar 

  28. Davoud Dastan, A. Banpurkar, Solution processable sol–gel derived titania gate dielectric for organic field effect transistors. J. Mater. Sci. 28(4), 3851–3859 (2017)

    Google Scholar 

  29. H.K. Li et al., A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx–Al2O3 thin film structure. J. Appl. Phys. 119(24), 244505 (2016)

    Article  Google Scholar 

  30. C.-Y. Wei et al., High-mobility pentacene-based thin-film transistors with a solution-processed barium titanate insulator. IEEE Electron Device Lett. 32(1), 90–92 (2011)

    Article  CAS  Google Scholar 

  31. T.W. Kim et al., High-frequency characteristics of L g = 60 nm InGaAs MOS high-electron-mobility-transistor (MOS-HEMT) with Al2O3 gate insulator. Electron. Lett. 52(10), 870–872 (2016)

    Article  CAS  Google Scholar 

  32. M.J. Tadjer et al., Communication—A (001) β-Ga2O3MOSFET with + 2.9 V threshold voltage and HfO2Gate dielectric. ECS J. Solid State Sci. Technol. 5(9), P468–P470 (2016)

    Article  CAS  Google Scholar 

  33. Y.Y. Yu, A.H. Jiang, W.Y. Lee, Organic/inorganic nano-hybrids with high dielectric constant for organic thin film transistor applications. Nanoscale Res. Lett. 11(1), 488 (2016)

    Article  Google Scholar 

  34. D.E. Martinez-Tong et al., Structural evolution of an organic semiconducting molecule onto a soft substrate. Chemphyschem 17(8), 1174–1179 (2016)

    Article  CAS  Google Scholar 

  35. J. Meza-Arroyo et al., Low temperature processing of Al2O3–GPTMS–PMMA hybrid films with applications to high-performance ZnO thin-film transistors. Appl. Surf. Sci. 467–468, 456–461 (2019)

    Article  Google Scholar 

  36. H. Najafi-Ashtiani et al., Structural, optical and electrical properties of WO3–Ag nanocomposites for the electro-optical devices. Appl. Phys. A 124(1), 24 (2017)

    Article  Google Scholar 

  37. J. Dong et al., Effect of Al doping on performance of ZnO thin film transistors. Appl. Surf. Sci. 433, 836–839 (2018)

    Article  CAS  Google Scholar 

  38. W. Yu et al., Titanium doped zinc oxide thin film transistors fabricated by cosputtering technique. Appl. Surf. Sci. 459, 345–348 (2018)

    Article  CAS  Google Scholar 

  39. H. Najafi-Ashtiani, A. Bahari, Optical and cyclic voltammetry behavior studies on nanocomposite film of copolymer and WO3 grown by electropolymerization. Synth. Met. 217, 19–28 (2016)

    Article  CAS  Google Scholar 

  40. H. Najafi-Ashtiani, A. Bahari, Optical, structural and electrochromic behavior studies on nanocomposite thin film of aniline, o -toluidine and WO 3. Opt. Mater. 58, 210–218 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the financial support of Velayat University for this research under Grant Number T-97-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Najafi-Ashtiani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi-Ashtiani, H. Low temperature processing of BaTiO3-PMMA-PVP hybrid films as transparent dielectric gate. J Mater Sci: Mater Electron 30, 7087–7094 (2019). https://doi.org/10.1007/s10854-019-01025-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01025-5

Navigation