Skip to main content
Log in

Dielectric Properties of PVP: BaTiO3 Interlayer in the Al/PVP: BaTiO3/P-Si Structure

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, the polyvinyl pyrrolidine (PVP) polymer layer doped by barium titanate (BaTiO3) nanostructures has been prepared as an interfacial layer to fabricate a metal-semiconductor-metal (MPS) diode. The inserted layer in the metal-semiconductor (MS) structure can be changed its dielectric properties which have been studied in this work. In addition, the frequency-dependent impedance measurements are performed at 1.5 V in frequency range 100 Hz-1 MHz. The variations of the dielectric constant (ε)/loss (ε′′), electrical modules, and ac electrical conductivity σac of them are investigated. It is found that the use of interfacial layer increases dielectric constant of the MPS five times more than MS. Also, PVP: BaTiO3 interlayer increases the electrical conductivity by decreasing the interfacial polarization. The results show that the conduction mechanisms are charge carrier’s interaction and trap states at the low/intermediate frequency and well-localized relaxation process at the high frequency. Therefore, PVP: BaTiO3 interlayer can be a suitable alternative replacement of intrinsic interlayer for utilization in the nanoscale electronic and optoelectronic devices and circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Weller H (1993). Adv Mater 5:88–95

    Article  CAS  Google Scholar 

  2. Soleimani S, Salabat A, Tabor RF (2014). J Colloid Interface Sci 426:287–292

    Article  CAS  PubMed  Google Scholar 

  3. Ajitha B, Reddy YAK, Reddy PS (2015). Powder Technol 269:110–117

    Article  CAS  Google Scholar 

  4. Ersöz G, Yücedağ İ, Azizian-Kalandaragh Y, Orak I, Altındal Ş (2016). IEEE Trans Electron Devices 63:2948–2955

    Article  Google Scholar 

  5. Azizian-Kalandaragh Y (2010). Optoelectron Adv Mater Rapid Commun 4:1655–1658

    CAS  Google Scholar 

  6. Bilkan Ç, Badali Y, Fotouhi-Shablou S, Azizian-Kalandaragh Y, Altındal Ş (2017). Appl Phys A Mater Sci Process 123:1–10

    Article  CAS  Google Scholar 

  7. Bilkan Ç, Altındal Ş, Azizian-Kalandaragh Y (2017). Physica B Condens 515:28–33

    Article  CAS  Google Scholar 

  8. Baraz N, Yücedağ İ, Azizian-Kalandaragh Y, Altındal Ş (2017). J Mater Sci Mater Electron 28:1315–1321

    Article  CAS  Google Scholar 

  9. Pirgholi-Givi G, Altındal Ş, Asl MS, Namini AS, Farazin J, Azizian-Kalandaragh Y (2020). Physica B Condens 604:412617

    Article  Google Scholar 

  10. Namini AS, Asl MS, Pirgholi-Givi G, Delbari SA, Farazin J, Altındal Ş, Azizian-Kalandaragh Y (2020). Appl Phys A Mater Sci Process 126:1–9

    Article  Google Scholar 

  11. Azizian-Kalandaragh Y, Farazin J, Altindal Ş, Asl MS, Pirgholi-Givi G, Delbari SA, Namini AS (2020). Appl Phys A Mater Sci Process 126:1–11

    Article  Google Scholar 

  12. Altindal S, Farazin J, Pirgholi-Givi G, Maril E, Azizian-Kalandaragh Y (2020). Physica B Condens 582:411958

    Article  CAS  Google Scholar 

  13. Yerişkin SA, Balbaşı M, Orak İ (2017). J Mater Sci Mater Electron 28:14040–14048

    Article  Google Scholar 

  14. Nezhadesm-Kohardafchahi S, Farjami-Shayesteh S, Badali Y, Altındal Ş, Jamshidi-Ghozlu M, Azizian-Kalandaragh Y (2018). Mater Sci Semicond Process 86:173–180

    Article  CAS  Google Scholar 

  15. Buyukbas-Uluşan A, Yerişkin SA, Tataroğlu A, Balbaşı M, Kalandaragh YA (2018). J Mater Sci Mater Electron 29:8234–8243

    Article  Google Scholar 

  16. Boughdachi S, Badali Y, Azizian-Kalandaragh Y, Altındal Ş (2018). J Electron Mater 47:6945–6953

    Article  CAS  Google Scholar 

  17. Akhlaghi EA, Badali Y, Altindal S, Azizian-Kalandaragh Y (2018). Physica B: Condens 546:93–98

    Article  CAS  Google Scholar 

  18. Sharma M, Tripathi S (2016). Mater Sci Semicond Process 41:155–161

    Article  CAS  Google Scholar 

  19. Tanrıkulu EE, Altındal Ş, Azizian-Kalandaragh Y (2018). J Mater Sci Mater Electron 29:11801–11811

    Article  Google Scholar 

  20. Demirezen S, Orak I, Azizian-Kalandaragh Y, Altındal Ş (2017). J Mater Sci Mater Electron 28:12967–12976

    Article  CAS  Google Scholar 

  21. Kumar N, Chand S (2020). J Alloys Compd 817:153294

    Article  CAS  Google Scholar 

  22. Reddy VR, Manjunath V, Janardhanam V, Leem C-H, Choi C-J (2015). J Electron Mater 44:549–557

    Article  Google Scholar 

  23. Marıl E, Tan SO, Altındal Ş, Uslu İ (2018). IEEE Trans Electron Devices 65:3901–3908

    Article  Google Scholar 

  24. Wang W-N, Lenggoro IW, Terashi Y, Wang Y-C, Okuyama K (2005). J Mater Res 20:2873–2882

    Article  CAS  Google Scholar 

  25. Tataroğlu A, Altındal Ş, Azizian-Kalandaragh Y (2020). Physica B Condens 576:411733

    Article  Google Scholar 

  26. Altındal Ş, Sevgili Ö, Azizian-Kalandaragh Y (2019). J Mater Sci Mater Electron 30:9273–9280

    Article  Google Scholar 

  27. Barkhordari A, Ozcelik S, Altindal S, Pirgholi-Givi G, Mashayekhi HR, Azizian-Kalandaragh Y (2021) Phys Scr 96:085805

  28. Masouleh FF, Das NK, Mashayekhi HR (2013). Opt Eng 52:127101

    Article  Google Scholar 

  29. Masouleh FF, Das N, Rozati SM (2015). Opt Quant Electron 47:1477–1485

    Article  CAS  Google Scholar 

  30. Das N, Karar A, Vasiliev M, Tan CL, Alameh K, Lee YT (2011). Opt Commun 284:1694–1700

    Article  CAS  Google Scholar 

  31. Das N, Masouleh FF, Mashayekhi HR (2014). IEEE Trans Nanotechnol 13:982–989

    Article  Google Scholar 

  32. Pannipitiya A, Rukhlenko ID, Premaratne M, Hattori HT, Agrawal GP (2010). Opt Express 18:6191–16204

    Article  CAS  PubMed  Google Scholar 

  33. M. Premaratne GPA (2011) Light propagation in gain media: optical amplifiers. Cambridge University Press, London

    Book  Google Scholar 

  34. Schroder DK (2015) Semiconductor material and device characterization. John Wiley & Sons, Hoboken

    Google Scholar 

  35. Seghier D, Gislason H (2000). J Appl Phys 88:6483–6487

    Article  CAS  Google Scholar 

  36. Abdallah F, Benali A, Triki M, Dhahri E, Graca M, Valente M (2018). Superlattice Microst 117:260–270

    Article  CAS  Google Scholar 

  37. Von HA, Arthur R (1954) Dielectrics and waves. John Wiley & Sons, New York

    Google Scholar 

  38. Singh L, Kim IW, Sin BC, Mandal KD, Rai US, Ullah A, Chung H, Lee Y (2014). RSC Adv 4:52770–52784

    Article  CAS  Google Scholar 

  39. Oumezzine E, Hcini S, Rhouma F, Oumezzine M (2017). J Alloys Compd 726:187–194

    Article  CAS  Google Scholar 

  40. Tecimer H, Uslu H, Alahmed Z, Yakuphanoğlu F, Altındal Ş (2014). Compos B Eng 57:25–30

    Article  CAS  Google Scholar 

  41. Bunget, Popescu M. (1984) Physics of solid dielectrics, Materials science monographs, 19

  42. Chełkowski A (1980) Dielectric physics, Elsevier Science & Technology, 9

  43. Abdullah OG, Salman YA, Saleem SA (2016). J Mater Sci Mater Electron 27:3591–3598

    Article  CAS  Google Scholar 

  44. Karadaş S, Yerişkin SA, Balbaşı M, Azizian-Kalandaragh Y (2021). J Phys Chem Solids 148:109740

    Article  Google Scholar 

  45. Baraz N, Yücedağ İ, Azizian-Kalandaragh Y, Altındal Ş (2018). J Mater Sci Mater Electron 29:12735–12743

    Article  CAS  Google Scholar 

  46. Bator G (1997). Ferroelectrics 200:287–295

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Gazi University Scientific Research Project. (Project Number: GU-BAP.05/2019–26).

Author information

Authors and Affiliations

Authors

Contributions

The author contribution of this article contribute is as follows: Ali Barkhordari, Experiments, Data analyses and graphs, writing; Süleyman Özçelik, Discussion, Writing and editing; Gholamreza Pirgholi-Givi, Experiments, Analyses of the samples, Discussion; Hamid Reza Mashayekhi, Writing, editing and interpretation of electrical properties; Şemsettin Altındal, Writing, editing and interpretation of electrical properties; Yashar Azizian-Kalandaragh, Idea, experimental section, editing and discussion.

Corresponding author

Correspondence to Yashar Azizian-Kalandaragh.

Ethics declarations

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkhordari, A., Özçelik, S., Pirgholi-Givi, G. et al. Dielectric Properties of PVP: BaTiO3 Interlayer in the Al/PVP: BaTiO3/P-Si Structure. Silicon 14, 5437–5443 (2022). https://doi.org/10.1007/s12633-021-01196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01196-z

Keywords

Navigation