Skip to main content
Log in

Temperature stability and electrical properties of Tm2O3 doped KNN-based ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For green development concern, lead-free piezoelectric ceramics 0.96(K0.48Na0.52)Nb0.96Sb0.04O3–0.04Bi0.5(Na0.82K0.18)0.5ZrO3xmol%Tm2O3 fabricated via conventional solid state method are studied. The analyses of X-ray diffraction and Raman dates show the coexistence phase of orthorhombic–tetragonal. Meanwhile, the tetragonal fraction increases with increasing Tm contents. Both the Cure temperature and the responding maximum permittivity decline with increasing x. At the same time, there are diffuse phase transition and relaxation-like phenomena after doping Tm. The activation energy, obtained from Arrhenius equation, suggests that there is a mixed conduction mechanism by both single-ionized and doubly oxygen vacancy diffusion. The temperature stabilities of remnant polarization and unipolar strain are significantly improved in the temperature range of 30–150 °C. Rare earth element Tm is useful for improving the temperature stability of the KNN-based piezoelectric ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Zhang, B. Shen, J. Zhai, H. Zeng, J. Am. Ceram. Soc. 99, 752–755 (2016)

    Article  Google Scholar 

  2. L. Liu, M. Wu, Y. Huang, Z. Yang, L. Fang, C. Hu, Mater. Chem. Phys. 126, 769–772 (2011)

    Article  Google Scholar 

  3. L. Liu, Y. Huang, C. Su, L. Fang, M. Wu, C. Hu, H. Fan, Appl. Phys. A 104, 1047 (2011)

    Article  Google Scholar 

  4. J. Deng, X. Sun, L. Liu, S. Liu, Y. Huang, L. Fang, B. Elouadi, J. Electron. Mater. 45, 4089–4099 (2016)

    Article  Google Scholar 

  5. L. Zheng, X. Yi, S. Zhang, W. Jiang, B. Yang, R. Zhang, W. Cao, Appl. Phys. Lett. 103, 122905 (2013)

    Article  Google Scholar 

  6. H. Tian, C. Hu, X. Meng, P. Tan, Z. Zhou, J. Li, B. Yang, Cryst. Growth Des. 15, 1180–1185 (2015)

    Article  Google Scholar 

  7. L. Zheng, J. Wang, X. Huo, R. Wang, S. Sang, S. Li, P. Zheng, W. Cao, J. Appl. Phys. 116, 044105 (2014)

    Article  Google Scholar 

  8. L. Liu, M. Wu, Y. Huang, L. Fang, H. Fan, H. Dammak, M.P. Thi, Mater. Res. Bull. 46, 1467–1472 (2011)

    Article  Google Scholar 

  9. L. Zheng, X. Huo, R. Wang, J. Wang, W. Jiang, W. Cao, CrystEngComm 15, 7718 (2013)

    Article  Google Scholar 

  10. L. Zheng, R. Sahul, S. Zhang, W. Jiang, S. Li, W. Cao, J. Appl. Phys. 114, 104105 (2013)

    Article  Google Scholar 

  11. C. Long, T. Li, H. Fan, Y. Wu, L. Zhou, Y. Li, L. Xiao, Y. Li, J. Alloys Compd. 658, 839–847 (2016)

    Article  Google Scholar 

  12. N. Zhao, H. Fan, L. Ning, J. Ma, Y. Zhou, J. Am. Ceram. Soc. 101, 5578–5585 (2018)

    Article  Google Scholar 

  13. J. Sui, H. Fan, B. Hu, L. Ning, Ceram. Int. 44, 18054–18059 (2018)

    Article  Google Scholar 

  14. N. Zhao, H. Fan, J. Ma, X. Ren, Y. Shi, Y. Zhou, Ceram. Int. 44, 11331–11339 (2018)

    Article  Google Scholar 

  15. B. Hu, H. Fan, L. Ning, S. Gao, Z. Yao, Q. Li, Ceram. Int. 44, 10968–10974 (2018)

    Article  Google Scholar 

  16. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30, 1705171 (2018)

    Article  Google Scholar 

  17. P. Li, X. Chen, F. Wang, B. Shen, J. Zhai, S. Zhang, Z. Zhou, ACS Appl. Mater. Interfaces 10, 28772–28779 (2018)

    Article  Google Scholar 

  18. J. Du, F. An, Z.J. Xu, R.F. Cheng, R.Q. Chu, X.J. Yi, J.G. Hao, W. Li, Ceram. Int. 42, 1943–1949 (2016)

    Article  Google Scholar 

  19. J. Du, Z. Xu, R. Chu, J. Hao, W. Li, P. Zheng, J. Mater. Sci. Mater. Electron. 27, 6535–6541 (2016)

    Article  Google Scholar 

  20. T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, K. Wang, J. Li, Y.L. Gu, J. Zhu, S.J. Pennycook, Energy Environ. Sci. 10, 528–537 (2017)

    Article  Google Scholar 

  21. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)

    Article  Google Scholar 

  22. Y.L. Qin, J.L. Zhang, W.Z. Yao, C.J. Lu, S.J. Zhang, ACS Appl. Mater. Interfaces 8, 7257–7265 (2016)

    Article  Google Scholar 

  23. J. Du, X. Yi, Z. Xu, C. Ban, T. Wang, B. Weng, K. Liao, Z. Huang, C. Wang, J. Mater. Sci. Mater. Electron. 23, 2053–2056 (2012)

    Article  Google Scholar 

  24. J. Du, X. Yi, Z. Xu, C. Ban, D. Zhang, P. Zhao, C. Wang, J. Alloys Compd. 541, 454–457 (2012)

    Article  Google Scholar 

  25. J. Du, G. Zang, X. Yi, Z. Xu, R. Chu, C. Ban, Y. Wei, P. Zhao, C. Wang, Mater. Lett. 79, 89–91 (2012)

    Article  Google Scholar 

  26. R. Zuo, J. Fu, J. Am. Ceram. Soc. 94, 1467–1470 (2011)

    Article  Google Scholar 

  27. J. X.Cheng, Wu, X.Wang, B., J. Zhang, D. Zhu, X. Xiao, X. Wang, Lou, Appl. Phys. Lett. 103, 052906 (2013)

    Article  Google Scholar 

  28. X. Wang, J. Wu, D. Xiao, X. Cheng, T. Zheng, X. Lou, B. Zhang, J. Zhu, ACS Appl. Mater. Interfaces 6, 6177–6180 (2014)

    Article  Google Scholar 

  29. R. Wang, K. Wang, F. Yao, J.F. Li, F.H. Schader, K.G. Webber, W. Jo, J. Rödel, S. Zhang, J. Am. Ceram. Soc. 98, 2177–2182 (2015)

    Article  Google Scholar 

  30. T. Zheng, J.G. Wu, D.Q. Xiao, J.G. Zhu, Scr. Mater. 94, 25–27 (2015)

    Article  Google Scholar 

  31. W. Li, Z.J. Xua, R.Q. Chu, P. Fu, G.Z. Zang, J. Alloys Compd. 583, 305–308 (2014)

    Article  Google Scholar 

  32. W. Li, Z.J. Xua, R.Q. Chu, P. Fu, G.Z. Zang, J. Am. Ceram. Soc. 94, 3181–3183 (2011)

    Article  Google Scholar 

  33. L.M. Jiang, Z. Tan, L.X. Xie, Y.Y. Li, J. Xing, J.G. Wu, Q. Chen, D.Q. Xiao, J.G. Zhu, J. Eur. Ceram. Soc. 38, 2335–2343 (2018)

    Article  Google Scholar 

  34. K. Kakimoto, K. Akao, Y. Guo, H. Ohsato, Jpn. J. Appl. Phys. 44, 7064–7067 (2005)

    Article  Google Scholar 

  35. Y. Shiratori, A. Magrez, C. Pithan, Chem. Phys. Lett. 391, 288–292 (2004)

    Article  Google Scholar 

  36. Z.Y. Shen, Z.M. Wang, W.C. Shen, Y.M. Li, W.Q Luo, J. Mater. Sci. Mater. Electron. 28, 137–141 (2017)

    Article  Google Scholar 

  37. K. Uchino, S. Nomura, Ferroelectrics 44, 55–61 (1982)

    Article  Google Scholar 

  38. L. Liu, M. Knapp, H. Ehrenberg, L. Fang, H. Fan, L.A. Schmitt, H. Fuess, M. Hoelzel, H. Dammak, M.P. Thi, M. Hinterstein, J. Eur. Ceram. Soc. 37, 1387–1399 (2017)

    Article  Google Scholar 

  39. R. Hayati, M.A. Bahrevar, T. Ebadzadeh, V. Rojas, N. Novak, J. Koruza, J. Eur. Ceram. Soc. 36, 3391–3400 (2016)

    Article  Google Scholar 

  40. Y.P. Pu, Y.H. Liang, G.A. Yang, J.F. Wang, W.H. Yang, Bull. Chin. Ceram. Soc. 26, 892–895 (2007)

    Google Scholar 

  41. C.L. Yuan, X.Y. Liu, J.Y. Huang, C.R. Zhou, J.W. Xu, Acta Phys. Sin. 60, 025201 (2011)

    Google Scholar 

  42. M. Zhou, X.M. Lu, D.Y. Yang, J.L. He, F.Z. Huang, F. Mei, X.M. Ren, X.Y. Xu, Y. Li, J.S. Zhu, Phys. Chem. Chem. Phys. PCCP 19, 1868–1874 (2017)

    Article  Google Scholar 

  43. M.A. Rafiq, M.E. Costa, A. Tkach, P.M. Vilarinho, Cryst. Growth Des. 15, 1289–1294 (2015)

    Article  Google Scholar 

  44. H. Yan, H. Zhang, M.J. Reece, X. Dong, Appl. Phys. Lett. 8, 082911 (2005)

    Article  Google Scholar 

  45. H.X. Yan, H.T. Zhang, R. Ubic, M.J. Reece, J. Liu, Z.J. Zhang, Z. Zhang, Adv. Mater. 10, 1261–1265 (2005)

    Article  Google Scholar 

  46. P.K. Davies, M.A. Akbas, J. Phys. Chem. Solids 61, 159–166 (2000)

    Article  Google Scholar 

  47. B.P. Burton, E. Cockayne, U.V. Waghmare, Phys. Rev. B 72, 064113 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Shandong China (Grant Nos. ZR2018MEM011, ZR201709250374, ZR2017MEM019 and ZR2016EMM02), the National Key R&D Program of China (NO.2016YFB0402701), the Key R & D project of Shandong Province (No. 2017GGX202008) and the Project of Shandong Province Higher Educational Science and Technology Program (No. J17KA005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Du or Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, Y., Du, J., Chen, C. et al. Temperature stability and electrical properties of Tm2O3 doped KNN-based ceramics. J Mater Sci: Mater Electron 30, 4716–4725 (2019). https://doi.org/10.1007/s10854-019-00765-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00765-8

Navigation