Skip to main content
Log in

Study of structural and electrical properties along with magnetic properties of Ni0.5−xMgxCu0.2Cd0.3Fe2O4 nanoferrites synthesized by employing sol–gel auto-combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The mixed ferrite sample Ni0.5−xMgxCu0.2Cd0.3Fe2O4 (0.0 ≤ x ≤ 0.5, in the steps 0.1) has been synthesized employing sol–gel auto-combustion process. From XRD diffractograms, it has been observed the simple cubic spinel structure of the ferrite samples. With the substitution of Mg ion, both the experimental and theoretical lattice constant increased. For x = 0.0, the value of experimental lattice constant has been found 8.459 Å, which increases to a value 8.490 Å for x = 0.5. The surface morphology has been studied by FESEM images. Besides, the chemical composition and the elemental distribution of the sample have been revealed by EDS study. From the vibration band, the formation of spinel ferrite has been confirmed from the FT-IR spectra. It is seen that the samples exhibit ferrimagnetic behavior at room temperature, which has been shown by the magnetic measurement done by VSM. Dielectric constant, dielectric loss tangent, ac conductivity, and impedance Spectroscopy have been analyzed within the range 20 Hz–15 MHz. In the lower frequency region, a typical dielectric dispersion based on Maxwell–Wagner type interfacial polarization has been observed. Dielectric loss tangent exhibits an analogous sort of behavior as that of dielectric constant. The grain and grain boundary effect on electric properties have been studied from the complex impedance analysis. It has been seen that both the grain resistance and grain boundary resistance increase with the substitution of Mg2+ content. A rise in ac conductivity has been observed with the increase in frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.K. Chakrabarti, B.K. Nath, S. Brahma, S. Das, K. Goswami, U. Kumar, P. Mukhopadhyay, D. Das, M. Ammar, F. Mazaleyrat, J. Phys.: Condens. Matter 18, 5253–5267 (2006). https://doi.org/10.1088/0953-8984/18/22/023

    Article  CAS  Google Scholar 

  2. M.A. Rehman, M.A. Malik, M. Akram, K. Khan, A. Maqsood, Phys. Scr. 83, 015602 (2011). https://doi.org/10.1088/0031-8949/83/01/015602

    Article  CAS  Google Scholar 

  3. H. Su, X. Tang, H. Zhang, L. Jia, Z. Zhong, J. Magn. Magn. Mater. 322(13), 1779–1783 (2010). https://doi.org/10.1016/j.jmmm.2009.12.029

    Article  CAS  Google Scholar 

  4. K.M. Akther Hossain, T.S. Biswas, T. Yanagida, H. Tanaka, H. Tabata, T. Kawai, Mater. Chem. Phys. 120(2–3), 461–467 (2010). https://doi.org/10.1016/j.matchemphys.2009.11.040

    Article  CAS  Google Scholar 

  5. Q. Xiwei, J. Zhou, Y. Zhenxing, G. Zhilun, L. Longtu, J. Magn. Magn. Mater. 251(3), 316–322 (2002). https://doi.org/10.1016/S0304-8853(02)00854-5

    Article  Google Scholar 

  6. M.A. Gabal, J. Magn. Magn. Mater. 321(19), 3144–3148 (2009). https://doi.org/10.1016/j.jmmm.2009.05.047

    Article  CAS  Google Scholar 

  7. A.H. Lu, E.L. Salabas, F. Schüth, Angew. Chem. Ger. Ed. 46, 1222–1244 (2007). https://doi.org/10.1002/anie.200602866

    Article  CAS  Google Scholar 

  8. S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M.R. Ganjali, M. Rahimi-Nasrabadi, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01005-9

    Article  Google Scholar 

  9. H. Moradmard, S.F. Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, J. Alloys Compd. 650, 116–122 (2015). https://doi.org/10.1016/j.jallcom.2015.07.269

    Article  CAS  Google Scholar 

  10. R.M. Rosnan, Z. Othaman, R. Hussin, A.A. Ati, A. Samavati, S. Dabagh, S. Zare, Chin. Phys. B 25(4), 047501–047507 (2016). https://doi.org/10.1088/1674-1056/25/4/047501

    Article  CAS  Google Scholar 

  11. P. Chavan, L.R. Naik, P.B. Belavi, G. Chavan, C.K. Ramesha, R.K. Kotnala, J. Electron. Mater. (2016). https://doi.org/10.1007/s11664-016-4886-6

    Article  Google Scholar 

  12. B. Thangjam, I. Soibam, Int. J. Appl. Eng. Res. 12(23), 13201–13206 (2017)

    Google Scholar 

  13. S.M. Kabbur, U.R. Ghodake, R.C. Kambale, S.D. Sartale, L.P. Chikhale, S.S. Suryavanshi, J. Electron. Mater. 46(10), 5693–5704 (2017). https://doi.org/10.1007/s11664-017-5616-4

    Article  CAS  Google Scholar 

  14. J. Smit, H.P.J. Wijn, Ferrites (Wiley, New York, 1959), p. 136

    Google Scholar 

  15. S. Mirzaee, S.F. Shayesteh, S. Mahdavifar, Polymer 55(16), 3713–3719 (2014). https://doi.org/10.1016/j.polymer.2014.06.039

    Article  CAS  Google Scholar 

  16. A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, J. Magn. Magn. Mater. 358–359, 87–92 (2014). https://doi.org/10.1016/j.jmmm.2014.01.039

    Article  CAS  Google Scholar 

  17. K. Raju, G. Venkataiah, D.H. Yoon, Ceram. Int. 40(7A), 9337–9344 (2014). https://doi.org/10.1016/j.ceramint.2014.01.157

    Article  CAS  Google Scholar 

  18. N. Rezlescu, E. Rezlescu, C. Pasnicu, M. Craus, J. Phys, Condens. Mater. 6, 5707–5716 (1994). https://doi.org/10.1088/0953-8984/6/29/013

    Article  CAS  Google Scholar 

  19. A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43(6), 3161 (1991). https://doi.org/10.1103/PhysRevA.43.3161

    Article  CAS  Google Scholar 

  20. P. Roy, J. Bera, J. Magn. Magn. Mater. 298, 38–42 (2006). https://doi.org/10.1016/j.jmmm.2005.03.007

    Article  CAS  Google Scholar 

  21. B.D. Cullity, The Elements of X-ray Diffraction (Addison-Wesley Pub. Co. Inc, London, 1956), p. 42

    Google Scholar 

  22. N.M. Deraz, A. Alarifi, J. Anal. Appl. Pyrolysis 94, 41–47 (2012). https://doi.org/10.1016/j.jaap.2011.10.004

    Article  CAS  Google Scholar 

  23. S. Zare, A.A. Ati, S. Dabagh, R.M. Rosnan, Z. Othaman, J. Mol. Struct. 1089, 25–31 (2015). https://doi.org/10.1016/j.molstruc.2015.02.006

    Article  CAS  Google Scholar 

  24. Y. Wada, S. Nishimatsu, Grain growth mechanism of heavily phosphorous implanted polycrystalline silicon. J. Electron. Soc. 125, 1499 (1978). https://doi.org/10.1016/j.jmmm.2016.08.035

    Article  CAS  Google Scholar 

  25. M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M. Asghar, M.A. Khan, Curr. Appl. Phys. 14, 716 (2014). https://doi.org/10.1016/j.cap.2014.02.021

    Article  Google Scholar 

  26. W.B. White, W.A. De Angelis, Spectrochim. Acta Part A 23(4), 985 (1967). https://doi.org/10.1016/0584-8539(67)80023-0

    Article  CAS  Google Scholar 

  27. C.G. Ramankutty, S. Sugunan, Appl. Catal. A: Gen. 218(1–2), 39–51 (2001). https://doi.org/10.1016/S0926-860X(01)00610-X

    Article  CAS  Google Scholar 

  28. R.D. Waldron, Phys. Rev. 99(6), 1727 (1955). https://doi.org/10.1103/PhysRev.99.1727

    Article  CAS  Google Scholar 

  29. M. Kaur, S. Rana, P.S. Tarsikka, Ceram. Int. 38(5), 4319–4323 (2012). https://doi.org/10.1016/j.ceramint.2012.02.013

    Article  CAS  Google Scholar 

  30. Y. Cheng, Y. Zhao, Y. Zhang, X. Cao, J. Colloid Interface Sci. 344(2), 321 (2010). https://doi.org/10.1016/j.jcis.2009.12.044

    Article  CAS  Google Scholar 

  31. P. Priyadharsini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Mater. Chem. Phys. 116(1), 207–213 (2009). https://doi.org/10.1016/j.matchemphys.2009.03.011

    Article  CAS  Google Scholar 

  32. O.M. Hemeda, M.Z. Said, M.M. Barakat, J. Magn. Magn. Mater. 224(2), 132 (2001). https://doi.org/10.1016/S0304-8853(00)00578-3

    Article  CAS  Google Scholar 

  33. U.R. Ghodake, N.D. Chaudhari, R.C. Kambale, J.Y. Patil, S.S. Suryavanshi, J. Magn. Magn. Mater. 407, 60–68 (2016). https://doi.org/10.1016/j.jmmm.2016.01.022

    Article  CAS  Google Scholar 

  34. A. Pradeep, P. Priyadharsini, G. Chandrasekaran, J. Magn. Magn. Mater. 320(21), 2774–2779 (2008). https://doi.org/10.1016/j.jmmm.2008.06.012

    Article  CAS  Google Scholar 

  35. J. Smit, H.P.J. Wijn, Ferrites (Philips Technical Library, Eindhovan, 1959), p. 149

    Google Scholar 

  36. K. Maaz, W. Khalid, A. Mumtaz, S.K. Hasanain, J. Liu, J.L. Duan, Physica E 41, 593–599 (2009). https://doi.org/10.1016/j.physe.2008.10.009

    Article  CAS  Google Scholar 

  37. S. Joshi, M. Kumar, S. Chhoker, A. Kumar, M. Singh, J. Magn. Magn. Mater. (2016). https://doi.org/10.1016/j.jmmm.2016.11.090

    Article  Google Scholar 

  38. Z.C. Xu, J. Appl. Phys. 93(8), 4746–4749 (2003). https://doi.org/10.1063/1.1562745

    Article  CAS  Google Scholar 

  39. S.K. Nath, K.H. Maria, S. Noor, S.S. Sikder, S.S. Hoque, M.A. Hakim, J. Magn. Magn. Mater. 324(13), 2116–2120 (2012). https://doi.org/10.1016/j.jmmm.2012.02.023

    Article  CAS  Google Scholar 

  40. J.C. Maxwell, Electricity and Magnetism, vol. 328 (Oxford University Press, New York, 1954)

    Google Scholar 

  41. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83(1), 121–124 (1951). https://doi.org/10.1103/PhysRev.83.121

    Article  CAS  Google Scholar 

  42. A.A. Kadam, S.S. Shinde, S.P. Yadav, P.S. Patil, K.Y. Rajpure, J. Magn. Magn. Mater. 329, 59–64 (2013). https://doi.org/10.1016/j.jmmm.2012.10.008

    Article  CAS  Google Scholar 

  43. I. Soibam, Int. J. Mater Sci. Eng. 4(1), 54–59 (2016). https://doi.org/10.17706/ijmse.2016.4.1.54-59

    Article  Google Scholar 

  44. B. Thangjam, I. Soibam., J. Nanomat. Article ID 5756197, 1–10 (2017). https://doi.org/10.1155/2017/5756197

    Article  Google Scholar 

  45. C. Sujatha, K.V. Reddy, K.S. Babu, A.R.C. Reddy, K.H. Rao, Physica B 407, 1232–1237 (2012). https://doi.org/10.1016/j.physb.2012.01.108

    Article  CAS  Google Scholar 

  46. K.M. Batoo, M.S. Ansari, Nano Res. Lett. 7(1), 112 (2012). https://doi.org/10.1186/1556-276X-7-112

    Article  CAS  Google Scholar 

  47. K.W. Wagner, Ann. Phys. 40, 817–819 (1973)

    Google Scholar 

  48. S. Joshi, M. Kumar, H. Pandey, M. Singh, P. Pal, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.07.250

    Article  Google Scholar 

  49. M.P. Reddy, G. Balakrishnaiah, W. Madhuri, M.V. Ramana, N.R. Reddy, K.V. Siva Kumar, V.R.K. Murthy, R.R. Reddy, J. Phys. Chem. Solids 71(9), 1373–1380 (2010). https://doi.org/10.1016/j.jpcs.2010.06.007

    Article  CAS  Google Scholar 

  50. M.J. Miah, A.K.M.A. Hossai, Acta Metall. Sin. Engl. Lett. 29(6), 505–517 (2016). https://doi.org/10.1007/s40195-016-0408-z

    Article  CAS  Google Scholar 

  51. P.R. Arjunwadkar, R.R. Patil, J. Alloys Compd. 611, 273–277 (2014). https://doi.org/10.1016/j.jallcom.2014.05.054

    Article  CAS  Google Scholar 

  52. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18(11), 115028 (2009). https://doi.org/10.1088/0964-1726/18/11/115028

    Article  CAS  Google Scholar 

  53. M. Hashim, Alimuddin, S. Kumar, S. Ali, B.H. Koo, H. Chung, R. Kumar, J. Alloys Compd. 511(1), 107–114 (2012). https://doi.org/10.1016/j.jallcom.2011.08.096

    Article  CAS  Google Scholar 

  54. I.G. Austin, N.F. Mott, Adv. Phys. 18(71), 41–102 (1969). https://doi.org/10.1080/00018736900101267

    Article  CAS  Google Scholar 

  55. A. Vermaa, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Mater. Sci. Engi. B. 116, 1–6 (2005). https://doi.org/10.1016/j.mseb.2004.08.011

    Article  CAS  Google Scholar 

  56. C.A. Hogarth, M.H. Islam, S.S.M.S. Rahman, J. Mater. Sci. 28, 518–528 (1993). https://doi.org/10.1007/bf00357833

    Article  CAS  Google Scholar 

  57. H. Böttger, V.V. Bryksin, Hopping Conduction in Solids (Akademie-Verlag, Berlin, 1985)

    Google Scholar 

  58. A.N. Patil, M.G. Patil, K.K. Patankar, V.L. Mathe, R.P. Mahajan, S.A. Patil, Bull. Mater. Sci. 23(5), 447–452 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for the continual support of Chittagong University of Engineering and Technology (CUET), Chittagong 4349, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moazzam Hossen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossen, M.M., Hossen, M.B. Study of structural and electrical properties along with magnetic properties of Ni0.5−xMgxCu0.2Cd0.3Fe2O4 nanoferrites synthesized by employing sol–gel auto-combustion method. J Mater Sci: Mater Electron 30, 20801–20815 (2019). https://doi.org/10.1007/s10854-019-02447-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02447-x

Navigation