Skip to main content
Log in

Highly efficient catalytic reduction and electrochemical sensing of hazardous 4-nitrophenol using chitosan/rGO/palladium nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Designing and developing new catalytic materials is important in industrial and practical applications. Polysaccharide supported nanocomposites have gained increased attention due to the urgent need of non-toxic, environmental friendly and highly effective catalyst. Novel cross linked chitosan/rGO/palladium nanocomposites with different weight percentages of graphene and palladium were synthesized via simple and cost effective chemical reduction method. Electrostatic interaction between opposite charged groups of chitosan and palladium was analysed using FTIR and Raman spectroscopy. A mechanism for incorporation of palladium into the chitosan supported reduced graphene oxide (rGO) is proposed. Further, chitosan/rGO/palladium nanocomposites were characterized using FESEM and HRTEM. Size of the palladium nanoparticles was assessed to be 2–3 nm. XRD pattern confirms the presence of chitosan, graphene and (111) orientated Pd nanoparticles. Optical property of composites containing different weight percentages of rGO and Pd was analyzed using UV–Vis spectroscopy. Catalytic activity of nanocomposites, CS/rGO/Pd-5%, CS/rGO/Pd-10% and CS/rGO/Pd-15% was studied using 4-nitrophenol (4-NP) as the model reactant. Turn over frequency (TOF) of the catalyst, CS/rGO/Pd-15% was calculated to be 19.8 h−1. Concentration (wt% of) dependent catalytic behavior was observed. Chitosan/rGO/palladium nanocomposites modified glassy carbon electrode (GCE) was fabricated for the electrochemical determination of 4-nitrophenol using cyclic voltammetry. Limit of detection was found to be 86 nM. Sensitivity of the electrode was found to be 0.06875 μA μM−1 cm−2. It is concluded that the performance of this catalyst is an alternative technique for the sensing of 4-nitrophenol and catalytic hydrogenation to remove the toxic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1
Fig. 12

Similar content being viewed by others

References

  1. S. Dhanavel, E.A.K. Nivethaa, K. Dhanapal, V.K. Gupta, V. Narayanan, A. Stephen, RSC Adv. 6, 28871–28886 (2016)

    Article  Google Scholar 

  2. K. Suwannarat, K. Thongthai, S. Ananta, L. Srisombat, Colloids Surf. A 540, 73–80 (2018)

    Article  Google Scholar 

  3. S. Dhanavel, N. Manivannan, N. Mathivanan, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 257, 32–41 (2018)

    Article  Google Scholar 

  4. K. Dhanapal, T.A. Revathy, S. Dhanavel, V. Narayanan, A. Stephen, Surf. Interfaces 7, 58–68 (2017)

    Article  Google Scholar 

  5. E.A.K. Nivethaa, S. Dhanavel, A. Rebekah, V. Narayanan, A. Stephen, Mater. Sci. Eng.: C 66, 244–250 (2016)

    Article  Google Scholar 

  6. S. Kabir, A. Serov, P. Atanassov, J. Power Sources 375, 255–264 (2018)

    Article  Google Scholar 

  7. Z. Yin, D. Gao, S. Yao, B. Zhao, F. Cai, L. Lin, P. Tang, P. Zhai, G. Wang, D. Ma, X. Bao, Nano Energy 27, 35–43 (2016)

    Article  Google Scholar 

  8. L. Yu, Z. Han, Mater. Lett. 184, 312–314 (2016)

    Article  Google Scholar 

  9. Y. Zhao, J.A. Baeza, N. Koteswara Rao, L. Calvo, M.A. Gilarranz, Y.D. Li, L. Lefferts, J. Catal. 318, 162–169 (2014)

    Article  Google Scholar 

  10. D. Li, J. Zhang, C. Cai, Catal. Commun. 103, 47–50 (2018)

    Article  Google Scholar 

  11. X. Wang, P. Hu, F. Xue, Y. Wei, Carbohyd. Polym. 114, 476–483 (2014)

    Article  Google Scholar 

  12. Y.-Y. Kim, F.C. Meldrum, D. Walsh, Polym. Chem. 2, 1375–1379 (2011)

    Article  Google Scholar 

  13. S. Dhanavel, E.A.K. Nivethaa, V. Narayanan, A. Stephen, Mater. Sci. Eng.: C 75, 1399–1410 (2017)

    Article  Google Scholar 

  14. E.A.K. Nivethaa, S. Dhanavel, V. Narayanan, A. Stephen, Polym. Bull. 73, 3221–3236 (2016)

    Article  Google Scholar 

  15. R.K. Sharma, A.P. Lalita, Singh, React. Funct. Polym. 121, 32–44 (2017)

    Article  Google Scholar 

  16. S. Ren, P. Rong, Q. Yu, Ceram. Int. 44, 11940–11955 (2018)

    Article  Google Scholar 

  17. L. Wen, Y. Qing, Y. Yan, Transl. Mater. Res. 4, 035001 (2017)

    Article  Google Scholar 

  18. Y. Zhong, Y. Gu, L. Yu, G. Cheng, X. Yang, M. Sun, B. He, Colloids Surf. A 547, 28–36 (2018)

    Article  Google Scholar 

  19. C. Zhang, S. Govindaraju, K. Giribabu, Y.S. Huh, K. Yun, Sens. Actuators B 252, 616–623 (2017)

    Article  Google Scholar 

  20. W. Dong, S. Cheng, C. Feng, N. Shang, S. Gao, C. Wang, Catal. Commun. 90, 70–74 (2017)

    Article  Google Scholar 

  21. T.A. Revathy, S. Dhanavel, T. Sivaranjani, V. Narayanan, T. Maiyalagan, A. Stephen, Appl. Surf. Sci. 449, 764–771 (2018)

    Article  Google Scholar 

  22. E.A.K. Nivethaa, S. Dhanavel, V. Narayanan, C.A. Vasu, A. Stephen, RSC Adv. 5, 1024–1032 (2015)

    Article  Google Scholar 

  23. D. Sangamithirai, V. Narayanan, B. Muthuraaman, A. Stephen, Mater. Sci. Eng.: C 55, 579–591 (2015)

    Article  Google Scholar 

  24. W. Wei, A. Tian, F. Jia, K. Wang, P. Qu, M. Xu, RSC Adv. 6, 87440–87445 (2016)

    Article  Google Scholar 

  25. S. Yang, W. Yue, D. Huang, C. Chen, H. Lin, X. Yang, RSC Adv. 2, 8827–8832 (2012)

    Article  Google Scholar 

  26. A.G.M. da Silva, T.S. Rodrigues, L.S.K. Taguchi, H.V. Fajardo, R. Balzer, L.F.D. Probst, P.H.C. Camargo, J. Mater. Sci. 51, 603–614 (2016)

    Article  Google Scholar 

  27. A.T.E. Vilian, S.R. Choe, K. Giribabu, S.-C. Jang, C. Roh, Y.S. Huh, Y.-K. Han, J. Hazard. Mater. 333, 54–62 (2017)

    Article  Google Scholar 

  28. A. Padmanaban, T. Dhanasekaran, R. Manigandan, S.P. Kumar, G. Gnanamoorthy, A. Stephen, V. Narayanan, N. J. Chem. 41, 7020–7027 (2017)

    Article  Google Scholar 

  29. A. Niaz, J. Fischer, J. Barek, B. Yosypchuk, M.I. Bhanger, Electroanalysis 21, 1786–1791 (2009)

    Article  Google Scholar 

  30. H. Yin, Y. Zhou, S. Ai, X. Liu, L. Zhu, L. Lu, Microchim. Acta 169, 87–92 2010

    Article  Google Scholar 

  31. J. Chen, G. Yang, M. Chen, W. Li, Russ. J. Electrochem. 45, 1287 (2009)

    Article  Google Scholar 

  32. W. Sun, M.X. Yang, Q. Jiang, K. Jiao, Chin. Chem. Lett. 19, 1156–1158 (2008)

    Article  Google Scholar 

  33. L. Chu, L. Han, X. Zhang, J. Appl. Electrochem. 41, 687–694 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

One of the author S. D thanks UGC-UPE-Phase II for its support in the form of fellowship. Authors would like to acknowledge Mr. Viswanathan, Vellore Institute of Technology and Mr. K.C. Dharani balaji IIT Madras for HRTEM and FESEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stephen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanavel, S., Revathy, T.A., Padmanaban, A. et al. Highly efficient catalytic reduction and electrochemical sensing of hazardous 4-nitrophenol using chitosan/rGO/palladium nanocomposite. J Mater Sci: Mater Electron 29, 14093–14104 (2018). https://doi.org/10.1007/s10854-018-9541-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9541-y

Navigation