Skip to main content
Log in

Effects of sintering atmospheres on thermoelectric properties, phase, microstructure and lattice parameters c/a ratio of Al, Ga dual doped ZnO ceramics sintered at high temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermoelectric properties, phase and microstructural investigation of (Zn1−x−yAlxGay)O, where x = 0.02, y = 0.04, 0.05 and x = 0.03, y = 0.01, 0.02 are studied at a high temperature of 1450 °C in this article. We have focused on the effects of sintering atmospheres on thermoelectric properties, phase, and microstructure in the air as well in the argon atmosphere. The Seebeck coefficient (S) and electrical resistivities (ρ) measured in air and argon atmospheres have an evidential large difference. The air sintered Al, Ga co-doped ZnO has higher power factor (S2σ) of the order 720.9 µW K− 2 m− 1 and lower electrical resistivity (ρ) of 5.803 mΩ cm for the nominal formula (Zn1− x−yAlxGay)O, with x = 0.03, y = 0.01 as compared to the power factor 543.6 µW K− 2 m− 1 and electrical resistivity of the order 1.550 mΩ cm at 692.2 °C sintered in the argon atmosphere at the same temperature i.e. 1450 °C. The power factor of the air sintered sample with x = 0.03, y = 0.01 is 1.4 times higher than the argon sintered sample with the same composition. The difference in power factors and electrical resistivities are linked to sintering atmospheres. We will investigate the effects of sintering atmospheres of the co-doped ZnO and will study thermoelectric properties, phase, and microstructures of the co-doped ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.L. Wang, J. Song, Science 312, 242 (2006)

    Article  Google Scholar 

  2. J. Xu, J. Han, Y. Zhang, Y. Sun, B. Xie, Sens. Actuators B 132, 334 (2008)

    Article  Google Scholar 

  3. F. Jiang, Z. Peng, Y. Zhang, X. Fu, J. Adv. Ceram. 2, 201 (2013)

    Article  Google Scholar 

  4. T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai, J. Mater. Chem. 7, 85 (1997)

    Article  Google Scholar 

  5. C. Wood, D. Emin, Phys. Rev. B 29, 4582 (1984)

    Article  Google Scholar 

  6. S. Yugo, T. Sato, T. Kimura, Appl. Phys. Lett. 46, 842 (1985)

    Article  Google Scholar 

  7. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gold, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 8, 4670 (2008)

    Article  Google Scholar 

  8. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008)

    Article  Google Scholar 

  9. V.F. Litvinenko, A.R. Kopan, Powder Metall. Met. Ceram. 48, 77 (2009)

    Article  Google Scholar 

  10. J.F. Nakahara, T. Takeshita, M.J. Tschetter, B.J. Beaudry, K.A. Gschneidner Jr., J. Appl. Phys. 63, 2331 (1988)

    Article  Google Scholar 

  11. W. Macklin, P. Moseley, Mater. Sci. Eng. B 7, 111 (1990)

    Article  Google Scholar 

  12. T.O. Mason, Mater. Sci. Eng. B 10, 257 (1991)

    Article  Google Scholar 

  13. S. Teehan, H. Efstathiadis, P. Haldar, J. Alloys Compd. 509, 1094 (2011)

    Article  Google Scholar 

  14. D. Bérardan, C. Byl, N. Dragoe., J. Am. Ceram. Soc. 93, 2352 (2010)

    Article  Google Scholar 

  15. K. Park, H.K. Hwang, J.W. Seo, W.S. Seo, Energy 54, 139 (2013)

    Article  Google Scholar 

  16. L. Fang, X.F. Yang, L.P. Peng, K. Zhou, F. Wu, Q.L. Huang, C.Y. Kong, J. Supercond. Nov. Magn. 23, 889 (2010)

    Article  Google Scholar 

  17. D.B. Zhang, B.P. Zhang, D.S. Ye, Y.C. Liu, S. Li, J. Alloys Compd. 656, 784 (2016)

    Article  Google Scholar 

  18. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)

    Article  Google Scholar 

  19. M. Deore, G. Jain, Int. J. Nanopart. 7, 57 (2014)

    Article  Google Scholar 

  20. M.A.L. Nobre, S. Lanfredi, Appl. Phys. Lett. 82, 2284 (2003)

    Article  Google Scholar 

  21. O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda, A.K. Pradhan, Appl. Phys. Lett. 90, 252108 (2007)

    Article  Google Scholar 

  22. L. Hui, Q. Hong, Y. Mingpeng, C. Xiaobai, Mater. Chem. Phys. 126, 866 (2011)

    Article  Google Scholar 

  23. S.B. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B 63, 075205 (2001)

    Article  Google Scholar 

  24. H. Colder, E. Guilmeau, C. Harnois, S. Marinel, R. Retoux, E. Savary, J. Eur. Ceram. Soc. 31, 2957 (2011)

    Article  Google Scholar 

  25. L. Han, L.T. Hung, N.V. Nong, N. Pryds, S. Linderoth, J. Electron. Mater. 42, 1573 (2013)

    Article  Google Scholar 

  26. Y. Kinemuchi, C. Ito, H. Kaga, T. Aoki., J. Mater. Res. 22, 1942 (2007)

    Article  Google Scholar 

  27. S. Katsuyama, Y. Takagi, M. Ito, K. Majima, H. Nagai, J. Appl. Phys. 92, 1391 (2002)

    Article  Google Scholar 

  28. K.H. Jung, K.H. Li, W.S. Seo, S.M. Choi, Appl. Phys. Lett. 100, 253902 (2012)

    Article  Google Scholar 

  29. J.P. Wiff, Y. Kinemuchi, H. Kaga, C. Ito, K. Watari, J. Eur. Ceram. Soc. 29, 1413 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support extended by the key laboratory of advanced materials and state key laboratory of crystal materials, Shandong University. The financial support provided by the government of China under fundamental research fund (No. 2015TB019), Jinan 250100, People’s Republic of China is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matiullah or C.L. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matiullah, Wang, C., Su, W.B. et al. Effects of sintering atmospheres on thermoelectric properties, phase, microstructure and lattice parameters c/a ratio of Al, Ga dual doped ZnO ceramics sintered at high temperature. J Mater Sci: Mater Electron 29, 9555–9563 (2018). https://doi.org/10.1007/s10854-018-8990-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8990-7

Navigation