Skip to main content
Log in

Thermoelectric properties of Al-doped zinc oxide-based ceramics sintered at high temperature under different atmospheres

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The conventional Solid-state reaction (SSR) method was used to synthesize compositions of (Zn1−xAlx)O, with x varying from 0.005 to 0.05 respectively. The as-prepared compositions were sintered in the air as well as in an argon atmosphere at 1400 °C, and their phases, microstructures and thermoelectric properties were investigated. Single-phase ceramics were formed for the composition with x ≤ 0.02. However, some unknown phases () developed along with the parent phases for x ≥ 0.01 due to an over solubility limit of Al in Zn sintered in the air atmosphere. The highest Power factor (PF) for both air and an argon atmosphere were obtained 8.886 × 10−4 WK−2 m−1 and 5.389 × 10−4 WK−2 m−1 while, the lowest electrical resistivity (ρ) for the composition with x = 0.02 i.e. (Zn0.98Al0.02)O were obtained 7.674 mΩ cm and 1.430 mΩ cm at 702 °C respectively. The PF obtained in the air sintered atmosphere for the composition with x = 0.02 is 1.648 times higher than for the same composition sintered in an argon atmosphere. The ρ for the composition with x = 0.02 sintered in an argon atmosphere is 4.6202 times lowered for the same composition (x = 0.02) sintered in the air atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Radhakrishnan., in A. Review of, “Thermoelectrics Handbook, Macro to Nano, ed D.M. Rowe (CRC Press, Baco Raton, 2008). https://doi.org/10.1080/10426910802135819

    Chapter  Google Scholar 

  2. D.C. Look. Mater. Sci. Eng 80(1–3), 383 (2001)

    Article  Google Scholar 

  3. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72(12), 126501 (2009)

    Article  CAS  Google Scholar 

  4. W.T. Chang, Y.C. Chen, R.C. Lin, C.C. Cheng, K.S. Kao, Y.C. Huang, Curr. Appl. Phys. 11(1), S333 (2011)

    Article  Google Scholar 

  5. J. Xu, J. Han, Y. Zhang, Y. Sun, B. Xie, Sens. Actuators B 132(1), 334 (2008)

    Article  CAS  Google Scholar 

  6. F.C. Lin, Y. Takao, Y. Shimizu, M. Egashira. Sens. Actuators B: Chem. 25(1–3), 843 (1995)

    Article  CAS  Google Scholar 

  7. A. Manekkathodi, M.Y. Lu. C.W. Wang, L.J. Chen. Adv. Mater. 22(36), 4059 (2010)

    Article  CAS  Google Scholar 

  8. H. Colder, E. Guilmeau, C. Harnois, S. Marinel, R. Retoux, E. Savary. J. Eur. Ceram. Soc. 31(15), 2957 (2011)

    Article  CAS  Google Scholar 

  9. E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, R. Martins. Appl. Phys. A. 96(1), 197 (2009)

    Article  CAS  Google Scholar 

  10. X.D. Li, T.P. Chen, P. Liu, Y. Liu, K.C. Leong, Opt. Express 21(12), 14131 (2013)

    Article  CAS  Google Scholar 

  11. Ü Özgür, X. Gu, S. Chevtchenko, J. Spradlin, S.J. Cho, H. Morkoç, F.H. Pollak, H.O. Everitt, B. Nemeth, J.E. Nause, J. Electron. Mater. 35(4), 550 (2006)

    Article  Google Scholar 

  12. D.G. Thomas. J. Phys. Chem. Solids 15(1–2), 86 (1960)

    Article  CAS  Google Scholar 

  13. Y. Chen, D.M. Bagnall, H.J. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao. J. Appl. Phys. 84(7), 3912 (1998)

    Article  CAS  Google Scholar 

  14. D.C. Reynolds, D.C. Look, B. Jogai, Solid State Commun. 99(12), 873 (1996)

    Article  CAS  Google Scholar 

  15. X. Qu, W. Wang, S. Lv, D. Jia, Solid State Commun. 151(4), 332 (2011)

    Article  CAS  Google Scholar 

  16. K. Park, J.W. Choi, S.J. Kim, G.H. Kim, Y.S. Cho. J. Alloy. Compd. 485(1–2), 532 (2009)

    Article  CAS  Google Scholar 

  17. H. Ohta, W.S. Seo, K. Koumoto. J. Am. Ceram. Soc. 79(8), 2193 (1996)

    Article  CAS  Google Scholar 

  18. R.G. Gordon. Mater. Res. Bull. 25(8), 52 (2000)

    Article  CAS  Google Scholar 

  19. B. Shabbir, X. Wang, Y. Ma, S.X. Dou, S.S. Yan, L.M. Mei, Sci. Rep. 6, 23044 (2016)

    Article  CAS  Google Scholar 

  20. H. Babar Shabbir, C. Huang, Y. Yao, S. Ma, T.H. Dou, Johansen, H. Hosono, X. Wang, Phys. Rev. Mater. 1, 044805 (2017)

    Article  Google Scholar 

  21. A. Babar Shabbir, N. Ullah, M. Hassan, N.A. Irfan, Khan. J. Supercon. Nov. Magn. 24(5), 1521 (2011)

    Article  CAS  Google Scholar 

  22. B. Shabbir, M.I. Malik, N.A. Khan. J. Supercon. Nov. Magn. 24(6), 1977 (2011)

    Article  CAS  Google Scholar 

  23. M. Ullah, A. Wen B. Su, A.S. Manan, A. Abid, Shah, Z. Yao, Ceram. Int. 44(15), 17873 (2018)

    Article  CAS  Google Scholar 

  24. M. Ullah, W. Chunlei, A. WenBin Su, A.S. Manan, Ahmad, J.Mater. Sci: Mater. Electron. 1–6 (2019). https://doi.org/10.1007/s10854-019-00775-6

    Article  Google Scholar 

  25. Z.H. Zheng, P. Fan, G.X. Liang, P.J. Liu, P.J. Cao, D.P. Zhang, Z.K. Cai, X. Ou, C.Y. Lai, Mater. Sci. Forum 743, 138 (2013)

    Article  CAS  Google Scholar 

  26. S. Jantrasee, P. Moontragoon, S. Pinitsoontorn. J. Semicond. 37(9), 092002 (2016)

    Article  CAS  Google Scholar 

  27. Y. Yang, K.C. Pradel, Q. Jing, J.M. Wu, F. Zhang, Y. Zhou, ACS Nano 6(8), 6984 (2012)

    Article  CAS  Google Scholar 

  28. K. Park, H.K. Hwang, J.W. Seo, W. S. Seo., Energy 54, 139 (2013)

    Article  CAS  Google Scholar 

  29. M. Ohtaki, K. Araki, K. Yamamoto. J. Electron. Mater. 38(7), 1234 (2009)

    Article  CAS  Google Scholar 

  30. D. Bérardan, C. Byl, N. Dragoe. J. Am. Ceram. Soc. 93(8), 2352 (2010)

    Article  CAS  Google Scholar 

  31. M. Ullah, C.L. Wang, W.B. Su, A. Zaman, I. Ullah, J.Z. Zhai. J. Mater. Sci: Mater. Electron: 29(11), 9555 (2018)

    Google Scholar 

  32. P. Zhang, R.Y. Hong, Q. Chen, W.G. Feng, D. Badami. J. Mater. Sci. 25(2), 678 (2014)

    CAS  Google Scholar 

  33. A. Monshi, M.R. Foroughi, M.R. Monshi, J. World, Nano Sci. Eng. (WJNSE). 2(3), 154 (2012)

    Article  CAS  Google Scholar 

  34. M. Sajjad, I. Ullah, M.I. Khan, J. Khan, M.Y. Khan, M.T. Qureshi, Results Phys. 9, 1301 (2018)

    Article  Google Scholar 

  35. S. Hamdelou, K. Guergouri, L. Arab. Appl. Nanosci. 5(7), 817 (2015)

    Article  CAS  Google Scholar 

  36. N. Kamarulzaman, M.F. Kasim, R. Rusdi. Nanoscale Res. Lett. 10(1), 346 (2015)

    Article  CAS  Google Scholar 

  37. X. Sun, H.ZhangY. Liu, J. Guo, Z. Li. J. Adv. Ceram. 5(4), 329 (2016)

    Article  CAS  Google Scholar 

  38. J. Zhu, Q. Liu, J. Wang, Y. Zhou, W. Ye, F. Wang. J. Mater. Sci. 27(1), 818 (2016)

    CAS  Google Scholar 

  39. H. Li, H. Qiu, M.Yu,X. Chenb. Mater. Chem. Phys. 126(3), 866 (2011)

    Article  CAS  Google Scholar 

  40. T. Norby, J. Korean Ceram. Soc. 47(1), 19 (2010)

    Article  CAS  Google Scholar 

  41. M.H. Hong, C.S. Park, W.S. Seo, Y.S. Lim, J.K. Lee, H.H. Park. J. Nanomater. (2013). https://doi.org/10.1155/2013/131537

    Article  Google Scholar 

  42. L. Han, N.V. Nong, L.T. Hung, T. Holgate, N. Pryds, M. Ohtaki, S. Linderoth. J. Alloys Compd. 555, 291 (2013)

    Article  CAS  Google Scholar 

  43. J.P. Wiff, Y. Kinemuchi, H. Kaga, C. Ito, K. Watari, J. Eur. Ceram. Soc. 29(8), 1413 (2009)

    Article  CAS  Google Scholar 

  44. T. Tian, L. Cheng, L. Zheng, J. Xing, H. Gu, S. Bernik, H. Zeng, W. Ruan, K. Zhao, G. Li, Acta. Mater. 119, 136 (2016)

    Article  CAS  Google Scholar 

  45. M. Ullah, C.L. Wang, W.B. Su, J. Li, A. Manan, I. Ullah, M. Idrees, Mater. Sci. Semicond. Process. 87, 202 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support extended by the key laboratory of advanced materials and state key laboratory of crystal materials, Shandong University. The financial support provided by the Government of People’s Republic of China under Fundamental Research Grant (No. 2015TB019) is also highly acknowledged. The help of Professor Ikram Ullah Khan for English language improvement and healthy discussion is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mati Ullah.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, M., Chunlei, W., Su, W. et al. Thermoelectric properties of Al-doped zinc oxide-based ceramics sintered at high temperature under different atmospheres. J Mater Sci: Mater Electron 30, 8611–8618 (2019). https://doi.org/10.1007/s10854-019-01183-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01183-6

Navigation