Skip to main content
Log in

Influence of sintering temperature on the structural, electrical and microwave properties of yttrium iron garnet (YIG)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigates the structural, electrical and microwave properties of yttrium iron garnet (YIG) which focuses on the parallel evolving relationship with their dependence on the sintering temperature. The iron oxide obtained from the steel waste product (mill scale) was used to synthesize YIG. The raw mill scale underwent the milling and Curie temperature separation technique to produce high purity iron oxide powder which is the main raw material in preparing and fabricating YIG through high energy ball milling (HEBM) process. Microstructural features such as amorphous phase, grain boundary, secondary phase and intergranular pores contribute significantly to the additional magnetic anisotropy and demagnetizing fields, affecting the electric and microwave properties accordingly. The increment in electrical resistivity and decrement in linewidth while the microstructure was evolving is believed to be a strong indicator of improved phase purity and compositional stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Cruickshank, 1–2 GHz dielectrics and ferrites: overview and perspectives. J. Eur. Ceram. Soc. 23, 2721–2726 (2003)

    Article  CAS  Google Scholar 

  2. D.F. Gerald, O.E. Danial, Magnetic design for low field tunability of microwave ferrite resonators. J. Appl. Phys. 85, 4856–4858 (1999)

    Article  Google Scholar 

  3. E. Schlomann, Behavior of ferrites in the microwave frequency range. J. Phys. 31, 443–451 (1971)

    Google Scholar 

  4. P.B.A. Fechine, H.H.B. Rocha, R.S.T. Moretzsohn, J.C. Denardin, R. Lavín, A.S.B. Sombra, (2009). Study of microwave ferrite resonator antenna, based on a ferrimagnetic composite (Gd3Fe5O12)GdIGx-(Y3Fe5O12)YIG1 – x. IET Microw. Antennas Propag. 3, 1191–1198

    Article  Google Scholar 

  5. I. Stanca, Magnetically tunable dielectric resonators and filters. J. Optoelectronics Adv. Mater. 6, 59–64 (2008)

    Google Scholar 

  6. W.R. Holmquist, C.F. Kooi, R.W. Moss, Reaction kinetics of polycrystalline yttrium iron garnet. J. Am. Ceram. Soc. 44, 194–196 (1961)

    Article  CAS  Google Scholar 

  7. F.S. Jesus, C.A. Cortes, R. Valenzuela, S. Ammarm, A.M. Bolarin-Miro, Synthesis of Y3Fe5O12 (YIG) assisted by high-energy ball miling. Ceram. Int. 38, 5257–5263 (2012)

    Article  Google Scholar 

  8. Y. Ozturk, M.F. Ebeoglugil, E. Celik, I. Avgin, Characterization of cerium-doped yttrium iron garnet films prepared by sol–gel process. Adv. Nanoscale Magn. 122, 113–129 (2009)

    Article  CAS  Google Scholar 

  9. Z. Abbas, R.M. Al-habashi, K. Khalid, Garnet ferrite (Y3Fe5O12) nanoparticles prepared via modified conventional mixong oxides (MCMO) method. Eur. J. Sci. Res. 36, 154–160 (2009)

    Google Scholar 

  10. S.H. Vajargah, H.R.M. Hosseini, Z.A. Nemati, Preparation and characterization of nanocrystalline misch-metal-substituted yttrium iron garnet powder by the sol–gel combustion process. Int. J. Appl. Ceram Technol. 5, 464–468 (2008)

    Article  CAS  Google Scholar 

  11. K.H.J. Buschow, Handbook of Magnetic Materials, 1st edn. (Elsevier B. V., Amsterdam, 2015)

    Google Scholar 

  12. R. Valenzuela, Magnetic Ceramics, 1st edn. (Cambridge University Press, New York, 1994)

    Book  Google Scholar 

  13. M.N. Rahaman, Ceramic Processing and Sintering, 1st edn. (Marcel Dekker Inc Publication, New York, 1995)

    Google Scholar 

  14. R.S. Azis, M. Hashim, N.M. Saiden, N. Daud, N.N. Shahrani, Study the iron environments of the steel waste product and its possible potential applications in ferrites. Adv. Mater. Res. 1109, 295–299 (2015)

    Article  Google Scholar 

  15. A. Feng, G. Wu, C. Pan, Y. Wang, The behavior of acid treating carbon fiber and the mechanical properties and thermal conductivity of phenolic resin matrix composites. J. Nanosci. Nanotechnol. 17, 3859–3863 (2017)

    Article  CAS  Google Scholar 

  16. G. Wu, Y. Cheng, K. Wang, Y. Wang, A. Feng, Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging. J. Mater. Sci. 27, 5592–5599 (2016)

    CAS  Google Scholar 

  17. W. Yan, W. Xinming, Z. Wenzhi, L. Chunyan, L. Jinhua, W. Yujing, Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances. Mater. Res. Bull. 98, 59–63 (2018)

    Article  Google Scholar 

  18. G. Wu, H. Wu, K. Wang, C. Zheng, Y. Wang, A. Feng, Facile synthesis and application of multi-shelled SnO2 hollow spheres in lithium ion battery. RSC Adv. 6, 58069–58076 (2016)

    Article  CAS  Google Scholar 

  19. A. Feng, G. Wu, Y. Wang, C. Pan, Synthesis, preparation and mechanical property of wood fiber-reinforced poly(vinyl chloride) composites. J. Nanosci. Nanotechnol. 17, 3859–3863 (2017)

    Article  CAS  Google Scholar 

  20. C. Pan, J. Zhang, K. Kou, Y. Zhang, G. Wu, Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. Int. J. Heat Mass Transf. 120, 1–8 (2018)

    Article  CAS  Google Scholar 

  21. T. Ramesh, G.N. Rao, T. Suneetha, R.S. Shinde, V. Rajendar, S.R. Murthy, S.A. Kumar, Microwave-hydrothermal synthesis of Y3Fe5O12 nanoparticles: sintering temperature effect on structural, magnetic and dielectric properties. J. Supercond. Novel Magn. (2017). https://doi.org/10.1007/s10948-017-4425-6

    Article  Google Scholar 

  22. N.M.M. Shahrani, R.S. Azis, M. Hashim, J. Hassan, A. Zakaria, N. Daud, Effect of variation sintering temperature on magnetic permeability and grain sizes of Y3Fe5O12 via mechanical alloying technique. Mater. Sci. Forum 846, 395–402 (2016)

    Article  Google Scholar 

  23. J. Smit, H.P.J. Wijn, Ferrites. (Philips Technical Library, Eindhovan, 1959), pp. 221–245

    Google Scholar 

  24. C.D. Veitch, Synthesis of polycrystalline yttrium iron garnet and yttrium aluminium garnet from organic precursors. J. Mater. Sci. 26, 6527–6532 (1991)

    Article  CAS  Google Scholar 

  25. R. Chen, J. Zhou, L. Zheng, H. Zheng, P. Zheng, Z. Ying, J. Deng, Two-step sintering behavior of sol–gel derived dense and submicron-grained YIG ceramics. J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6080-5

    Article  Google Scholar 

  26. M.A. Musa, R.S. Azis, N.H. Osman, J. Hassan, T. Zangina, Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAlG) nanoferrite via sol-gel synthesis. Results Phys. 7, 1135–1142 (2017)

    Article  Google Scholar 

  27. R. Nazlan, M. Hashim, I.R. Ibrahim, F.M. Idris, W.N.W.A. Rahman, N.H. Abdullah, I. Ismail, S. Kanagesan, Z. Abbas, R.S. Azis, Influence of indium substitution and microstructure changes on the magnetic properties evolution of Y3Fe5 – xInxO12 (x = 0.0–0.4). J. Mater. Sci. 26, 3596–3609 (2015)

    CAS  Google Scholar 

  28. A. Goldman, (2006) Modern Ferrite Technology. (Springer Science and Business Media, Inc., Pittsburgh)

  29. T.A. Ring, Fundamentals of Ceramic Powder Processing and Synthesis, 1st edn. (Academic Press. Inc. Publication, New York, 1996)

    Google Scholar 

  30. H.M. Widatallah, C. Johnson, S.H. Al-Harthi, A.M. Gismelseed, A.D. Al-Rawas, S.J. Stewart, M.E. Elzain, I.A. Al-Omari, A.A. Yousif, A structural and mössbauer study of Y3Fe5O12 nanoparticles prepared with high energy ball milling and subsequent sintering. Hyperfine Interact. 183, 87–92 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Graduate Putra Grants UPM Malaysia Vot. Nos. 9539100 and 9541600 for its financial assistance. The authors also would like to thank the Department of Physics of the Faculty of Science, UPM and the Materials Synthesis and Characterization Laboratories (MSCL), ITMA, UPM for the measurements facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Azis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azis, R.S., Syazwan, M.M., Shahrani, N.M.M. et al. Influence of sintering temperature on the structural, electrical and microwave properties of yttrium iron garnet (YIG). J Mater Sci: Mater Electron 29, 8390–8401 (2018). https://doi.org/10.1007/s10854-018-8850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8850-5

Navigation