Skip to main content

Advertisement

Log in

Shape controlled synthesis of rod-like Co3O4 nanostructures as high-performance electrodes for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hydrothermal synthesis of Co3O4 nanorod electro-active material has been reported. The obtained Co3O4 material displays the cubic structure with 1D rod-like architecture. FT-IR and Raman spectral analyses have been carried out to confirm the functional groups and phase formation of Co3O4 electro-active material. Thermal stability of the as-prepared electro-active material has been studied by TG/DTA analysis. The electrochemical properties of the modified Co3O4 electrode have been analyzed by CV, CP and EIS using three electrode systems. The modified Co3O4 electrode exhibits the higher specific capacitance of 655 F g−1 at a current density of 0.5 A g−1 in 1 M KOH electrolyte. The high capacitance performance of the modified Co3O4 electrode was attributed to the highly crystalline rod-like structure. The Co3O4 electrode exhibits the excellent supercapacitive behaviour with better cyclic stability and high rate capacitive retention. The modified electrode reveals the Faradic behaviour, which is attributed to the redox contribution of Co(OH)/CoOOH (or) Co2+ ↔ Co3+ ↔ Co4+ in alkaline medium that makes this material as a potential electrode for charge storage applications in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.L. Liu, L.Z. Fan, X. Qu, Low temperature hydrothermal synthesis of nano-sized manganese oxide for supercapacitors. Eectrochim. Acta 66, 302–305 (2012)

    Article  CAS  Google Scholar 

  2. V. Venkatachalam, A. Alsalme, A. Alghamdi, R. Jayavel, High performance electrochemical capacitor based on MnCo2O4 nanostructured electrode. J Electroanal. Chem. 756, 94–100 (2015)

    Article  CAS  Google Scholar 

  3. Y. Zhang, J. Li, F. Kang, F. Gao, X. Wang, Fabrication and electrochemical characterization of two-dimensional ordered nanoporous manganese oxide for supercapacitor applications. Int. J. Hydrog. Energy 37, 860–866 (2012)

    Article  CAS  Google Scholar 

  4. Y. Xiao, A. Zhang, S. Liu, J. Zhao, S. Fang, D. Jia, F. Li, Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances. J. Power Sources 219, 140–146 (2012)

    Article  CAS  Google Scholar 

  5. S. Chen, W.Xing, J. Duan, X. Hu, S.Z. Qiao, Nanostructured morphology control for efficient supercapacitor electrodes. J. Mater. Chem. A 1, 2941–2954 (2013)

    Article  CAS  Google Scholar 

  6. Y.F. Yuan, Y.B. Pei, S.Y. Guo, J. Fang, J.L. Yang, Sparse MnO2 nanowires clusters for high-performance supercapacitors. Mater. Lett. 73, 194–197 (2012)

    Article  CAS  Google Scholar 

  7. S. Vijayakumar, S.Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 5, 2188–2196 (2013)

    Article  CAS  Google Scholar 

  8. G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J. Power Sources 196, 5756–5760 (2011)

    Article  CAS  Google Scholar 

  9. Y. Gao, S. Chen, D. Cao, G. Wang, J. Yin, Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J. Power Sources 195, 1757–1760 (2010)

    Article  CAS  Google Scholar 

  10. K. Qiu, Y. Lu, J. Cheng, H. Yan, X. Hou, D. Zhang, M. Lu, X. Liu, Y. Luo, Ultrathin mesoporous Co3O4 nanosheets on Ni foam for high-performance supercapacitors. Electrochim. Acta 157, 62–68 (2015)

    Article  CAS  Google Scholar 

  11. S.K. Meher, G.R. Rao, Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 115, 15646–15654 (2011)

    Article  CAS  Google Scholar 

  12. L. Wang, B. Liu, S. Ran, H. Huang, X. Wang, B. Liang, D. Chen, G. Shen, Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. 22, 23541–23547 (2012)

    Article  CAS  Google Scholar 

  13. W. Liu, L. Xu, D. Jiang, J. Qian, Q. Liu, X. Yang, K. Wang, Reactable ionic liquid assisted preparation of porous Co3O4 nanostructures with enhanced supercapacitive performance. CrystEngComm. 16, 2395–2403 (2014)

    Article  CAS  Google Scholar 

  14. B. Vidyadharan, R.A. Aziz, I.I. .Misnon, G.M. Anil Kumar, J. Ismail, M.M. Yusoff, R. Jose, High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode. J. Power Sources 270, 526–535 (2014)

    Article  CAS  Google Scholar 

  15. K. Qiu, H. Yan, D. Zhang, Y. Lu, J. Cheng, W. Zhao, C. Wang, Y. Zhang, X. Liu, C. Cheng, Y. Luo, Hierarchical 3D mesoporous conch-like Co3O4 nanostructure arrays for high-performance supercapacitors. Electrochim. Acta 141, 248–254 (2014)

    Article  CAS  Google Scholar 

  16. F. Luo, J. Li, Y. Lei, W. Yang, H. Yuan, D. Xiao, Three-dimensional enoki mushroom-like Co3O4 hierarchitectures constructed by one-dimension nanowires for high-performance supercapacitors. Electrochim. Acta 135, 495–502 (2014)

    Article  CAS  Google Scholar 

  17. Y.Q. Li, X.Y. Zhang, S.J. Liu, X.Y. Shi, H. Zhao, X. Zhang, G.F. Ge, C.D. Cai, X.L. Gu, J.P. Wang, L. Tu, One-dimension MnCo2O4nanowire arrays for electrochemical energy storage. Electrochim. Acta 116, 467–474 (2014)

    Article  CAS  Google Scholar 

  18. H. Yang, Y. Hu, X. Zhang, G. Qiu, Mechanochemical synthesis of cobalt oxide nanoparticles. Mater. Lett. 58, 387–389 (2004)

    Article  CAS  Google Scholar 

  19. L.B. Kong, J.W. Lang, M. Liu, Y.C. Luo, L. Kang, Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. J. Power Sources 194, 1194–1201 (2009)

    Article  CAS  Google Scholar 

  20. D. Xu, Y. Yang, H. Cheng, Y.Y. Li, K. Zhang, Integration of nano-Al with Co3O4 nanorods to realize high-exothermic core–shell nanoenergetic materials on a silicon substrate. Combust. Flame 159, 2202–2209 (2012)

    Article  CAS  Google Scholar 

  21. M. Aghazadeh, Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material. J. Appl. Electrochem. 42, 89–94 (2012)

    Article  CAS  Google Scholar 

  22. V.G. Hadjiev, M.N. Iliev, I.V. Vergilov, The Raman spectra of Co3O4,. J. Phys. C 21, L199-L201 (1988)

    Article  Google Scholar 

  23. J. Pal, P. Chauhan, Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Mater. Charact. 61, 575–579 (2010)

    Article  CAS  Google Scholar 

  24. X. Qing, S. Liu, K. Huang, K. Lv, Y. Yang, Z. Lu, D. Fang, X. Liang, Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochim. Acta 56, 4985–4991 (2011)

    Article  CAS  Google Scholar 

  25. S. Palmas, F. Ferrara, A. Vacca, M. Mascia, A.M. Polcaro, Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium. Electrochim. Acta 53, 400–406 (2007)

    Article  CAS  Google Scholar 

  26. V. Venkatachalam, A. Alsalme, A. Alswieleh, R. Jayavel, Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications. Chem. Eng. J. 321, 474–483 (2017)

    Article  CAS  Google Scholar 

  27. Y.Q. Wu, X.Y. Chen, P.T. Ji, Q.Q. Zhou, Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochim. Acta 56, 7517–7522 (2011)

    Article  CAS  Google Scholar 

  28. J. Chen, K. Huang, S. Liu, Insoluble metal hexacyanoferrates as supercapacitor electrodes. Electrochem. Commun. 10, 1851–1855 (2008)

    Article  CAS  Google Scholar 

  29. R. Ding, L. Qi, M. Jia, H. Wang, Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performanceaqueous hybrid AC-NiCo2O4 electrochemical capacitors. Electrochim. Acta 107, 494–502 (2013)

    Article  CAS  Google Scholar 

  30. S.G. Kandalkar, J.L. Gunjakar, C.D. Lokhande, Preparation of cobalt oxide thin films and its use in supercapacitor application. Appl. Surf. Sci. 254, 5540–5544 (2008)

    Article  CAS  Google Scholar 

  31. J. Deng, L. Kang, G. Bai, Y. Li, P. Li, X. Liu, Y. Yang, F. Gao, W. Liang, Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochim. Acta 132, 127–135 (2014)

    Article  CAS  Google Scholar 

  32. S.H. Kazemi, A. Asghari, M.A. Kiani, High performance supercapacitors based on the electrodeposited Co3O4 nanoflakes on electro-etched carbon fibers. Electrochim. Acta 138, 9–14 (2014)

    Article  CAS  Google Scholar 

  33. M. Jing, Y. Yang, Y. Zhu, H. Hou, Z. Wu, X. Ji, An asymmetric ultracapacitorsutilizing αCo(OH)2/Co3O4 flakes assisted by electrochemically alternating voltage. Electrochim. Acta 141, 234–240 (2014)

    Article  CAS  Google Scholar 

  34. M.A. Subramania, K. Balakrishnan, Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochim. Acta 149, 152–158 (2014)

    Article  Google Scholar 

  35. A. Xiao, S. Zhou, C. Zuo, Y. Zhuan, X. Ding, Controllable synthesis of mesoporous Co3O4 nanoflake array and its application for supercapacitor. Mater. Res. Bull. 60, 674–678 (2014)

    Article  CAS  Google Scholar 

  36. C. Zhao, J. Li, W. Chen, Y. Yang, K. Chiang, N. Burke, Synthesis and electrochemical properties of ordered mesoporous carbon supported well-dispersed cobalt oxide nanoparticles for supercapacitor. Mater. Res. Bull. 64, 55–60 (2015)

    Article  CAS  Google Scholar 

  37. Y. Tang, Y. Liu, S. Yu, S. Mu, S. Xiao, Y. Zhao, F. Gao, Morphology controlled synthesis of monodisperse cobalt hydroxide for supercapacitor with high performance and long cycle life. J. Power Sources 256, 160–169 (2014)

    Article  CAS  Google Scholar 

  38. Y. Wang, A. Pan, Q. Zhu, Z. Nie, Y. Zhang, Y. Tang, S. Liang, G. Cao, Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors. J. Power Sources. 272, 107–112 (2014)

    Article  CAS  Google Scholar 

  39. V. Venkatachalam, A. Alsalme, A. Alghamdi, R. Jayavel, Hexagonal-like NiCo2O4 nanostructure based high-performance supercapacitor electrodes. Ionics 23, 977–984 (2017)

    Article  CAS  Google Scholar 

  40. R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 12, 2559–2567 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the International Scientific Partnership Programme ISPP at King Saud University for funding this research work through ISPP# 0098. One of the authors (VV) gratefully acknowledges the University Grants Commission (UGC), Government of India for the award of the Rajiv Gandhi National Fellowship (RGNF) to carry out this work [F1-17.1/2012-13/RGNF-2012-13-SC-TAM-25531/(SA-III/Website)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayavel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatachalam, V., Alsalme, A., Alswieleh, A. et al. Shape controlled synthesis of rod-like Co3O4 nanostructures as high-performance electrodes for supercapacitor applications. J Mater Sci: Mater Electron 29, 6059–6067 (2018). https://doi.org/10.1007/s10854-018-8580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8580-8

Navigation