Skip to main content

Advertisement

Log in

Finely depressed dielectric loss and conductivity achieved in high-kappa stannic oxide/polymer nanocomposites from surfactant-assisted electric percolation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

During past decades, both of interface polarization and electric percolation mechanisms have been found to have a significant influence on the dielectric and conductive properties of polymer based nanocomposites bearing electrically conducting nanoparticles. Although the significantly elevated high dielectric constant of composites has gained great success, the finely balanced high dielectric constant, depressed dielectric loss and low conductivity have been faced with a huge challenge. Instead of the high-cost organic modification onto the surfaces of inorganic conductive nanofiller, in current work, a small quantity of polyvinylpyrrolidone surfactant was introduced to prepare the ternary polymer based nanocomposite films bearing stannic oxide nanoparticles. Their dielectric and conductive performances were compared with that of the corresponding binary composites without bearing that surfactant. The positive influence of that surfactant on the finely balanced high comprehensive electric properties of composites namely high dielectric constant and depressed loss/conductivity was confirmed due to the improving of interface compatibility and depressing of interface air voids. The ternary nanocomposite bearing 10 vol% filler could have a dielectric constant of ca. 175, loss of ca. 0.35 and conductivity of ca. 1.8 × 10−5 S cm−1 at 1 kHz under 1 V bias voltage. This work might open the door to the large-scale fabrication of promising composite dielectrics materials by facilely introducing the third surfactant component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Piana, I. Cacciotti, M. Šlouf, J. Mater. Sci. 53, 11343–11354 (2018)

    Article  Google Scholar 

  2. H. Tang, G. Chen, Q. Li, Mater. Lett. 184, 143–147 (2016)

    Article  Google Scholar 

  3. L. Zheng, G. Liang, A. Gu, J. Mater. Chem. C 4, 10654–10663 (2016)

    Article  Google Scholar 

  4. S. Dong, C. Baek, H. Ma, Ceram. Int. 42, 7141–7147 (2016)

    Article  Google Scholar 

  5. C. Behera, R. Choudhary, P. Das, J. Electron. Mater. 46, 1–14 (2017)

    Article  Google Scholar 

  6. Y. Feng, M. Li, W. Li, Appl. Phys. Lett. 112, 022901 (2018)

    Article  Google Scholar 

  7. Z. Dang, M. Zheng, J. Zha, Small 12, 1688–1701 (2016)

    Article  Google Scholar 

  8. S. Liu, M. Tian, L. Zhang, J. Mater. Sci. 51, 2616–2626 (2016)

    Article  Google Scholar 

  9. M. Moussa, A. Ghoneim, M. Abdel Rehim, J. Appl. Polym. Sci. 134, 45415 (2017)

    Article  Google Scholar 

  10. F. Bashir, T. Hussain, A. Mujahid, Polym. Compos. 39, E1052–E1059 (2017)

    Article  Google Scholar 

  11. X. Liu, Z. Hou, B. Zhang, Appl. Phys. Lett. 108, 102902 (2016)

    Article  Google Scholar 

  12. D. Nuzhnyy, J. Petzelt, V. Bovtun, Ferroelectrics 500, 1–19 (2016)

    Article  Google Scholar 

  13. G. Chen, X. Wang, J. Lin, J. Phys. Chem. C 120, 28423–28431 (2016)

    Article  Google Scholar 

  14. A. Magerramov, R. Mamedova, I. Ismailov, Tech. Phys. 62, 1377–1380 (2017)

    Article  Google Scholar 

  15. Q. Jia, X. Huang, G. Wang, J. Phys. Chem. C 120, 10206–10214 (2016)

    Article  Google Scholar 

  16. T. Wang, J. Hu, H. Yang, J. Appl. Phys. 121, 084103 (2017)

    Article  Google Scholar 

  17. T. Tanaka, M. Kozako, N. Fuse, IEEE T. Dielect. Electr. Insul. 12, 669–681 (2005)

    Article  Google Scholar 

  18. P. Steeman, F. Maurer, Colloid Polym. Sci. 270, 1069–1079 (1992)

    Article  Google Scholar 

  19. M. Hori, S. Nemat-Nasser, Mech. Mater. 14, 189–206 (1993)

    Article  Google Scholar 

  20. S. Das, P. Achary, N. Nayak, Polym. Compos. 37, 3398–3410 (2016)

    Article  Google Scholar 

  21. P. Kumar, S. Yu, F. Shahzad, Carbon 101, 120–128 (2016)

    Article  Google Scholar 

  22. M. Gao, P. Zhang, Acta Phys. Sin 24, 196–203 (2016)

    Google Scholar 

  23. Y. Qi, Q. Luo, J. Shen, Appl. Surf. Sci. 414, 147–152 (2017)

    Article  Google Scholar 

  24. S. Liao, Z. Shen, H. Pan, J. Mater. Chem. C 5, 12777–12784 (2017)

    Article  Google Scholar 

  25. Y. Feng, Z. Xu, J. Hu, Mater. Res. Express 4, 095001 (2017)

    Article  Google Scholar 

  26. T. Dawin, Z. Ahmadi, F. Taromi, Prog. Org. Coat. 119, 23–30 (2018)

    Article  Google Scholar 

  27. G. Singh, R. Thangaraj, R. Singh, Ceram. Int. 42, 4323–4332 (2016)

    Article  Google Scholar 

  28. Y. Feng, B. Miao, H. Gong, ACS Appl. Mater. Interfaces 8, 19054–19065 (2016)

    Article  Google Scholar 

  29. M. Ruan, D. Yang, W. Guo, Appl. Surf. Sci. 439, 186–195 (2018)

    Article  Google Scholar 

  30. Z. Sun, C. Ma, M. Liu, Adv. Mater. 29, 1604427 (2017)

    Article  Google Scholar 

  31. R. Alam, M. Moradi, H. Nikmanesh, Mater. Res. Bull. 73, 261–267 (2016)

    Article  Google Scholar 

  32. O. Kozák, K. Datta, M. Greplová, J. Phys. Chem. C 117, 24991–24996 (2016)

    Article  Google Scholar 

  33. P. Barik, A. Bhattacharjee, M. Roy, Polym. Composite 37, 108–114 (2016)

    Article  Google Scholar 

  34. C. Lampadaris, E. Sakellis, A. Papathanassiou, Appl. Phys. Lett. 110, 222901 (2017)

    Article  Google Scholar 

  35. X. Hong, D. Wang, D. Chung, J. Electron. Mater. 45, 453–461 (2016)

    Article  Google Scholar 

  36. J. Li, J. Kim, Compos. Sci. Technol. 67, 2114–2120 (2007)

    Article  Google Scholar 

  37. A. Burkhanov, K. Bormanis, G. Akbaeva, Ferroelectrics 508, 93–99 (2017)

    Article  Google Scholar 

  38. P. Xu, W. Fu, Z. Cui, Appl. Phys. Lett. 112, 063904 (2018)

    Article  Google Scholar 

  39. L. Gao, X. Yang, J. Hu, Mater. Lett. 171, 1–4 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51502309) and the Talent Introduction Scientific Research Initiation Projects of Yangtze Normal University (Grant Nos. 2017KYQD33 and 2017KYQD34).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Peng, C., Deng, Q. et al. Finely depressed dielectric loss and conductivity achieved in high-kappa stannic oxide/polymer nanocomposites from surfactant-assisted electric percolation. J Mater Sci: Mater Electron 30, 2682–2692 (2019). https://doi.org/10.1007/s10854-018-0544-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0544-5

Navigation