Skip to main content
Log in

Tailoring dielectric properties of polymer composites by controlling alignment of carbon nanotubes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We prepared hydrogenated butadiene-acrylonitrile (HNBR) elastomer composites with random orientations of carbon nanotubes (CNTs) and aligned CNTs, denoted by random composites and aligned composites, respectively, by means of a simple mechanical blending method. The CNTs were dispersed uniformly in the HNBR matrix in both types of composites. Interestingly, at CNT contents of 1–2.5 vol%, the dielectric loss (tan δ) of the aligned composites increases slightly, and the dielectric constant (ε′) of aligned composites increases largely with the increasing content of CNTs, whereas both the tan δ and the ε′ of the random composites increase largely with the increasing content of CNTs. As a result, a high ε′ (5000 at 1000 Hz) and a low tan δ (0.42 at 1000 Hz) were obtained in the aligned composite with a CNT content of 2.5 vol%, whereas a high ε′ and a high tan δ were obtained in the random composites. The relationship between the microstructure and dielectric properties was qualitatively analyzed by means of the percolation theory and intercluster polarization model. The mechanism for the achievement of high ε′ and low tan δ for dielectric composites was discussed. This study provides a guide to design microstructure that yields composites with improved dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31(1):10–36

    Article  Google Scholar 

  2. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454):836–839

    Article  Google Scholar 

  3. Carpi F, De Rossi D, Kornbluh R, Pelrine RE, Sommer-Larsen P (2008) Dielectric elastomers as electromechanical transducers: fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier, Oxford, UK

    Google Scholar 

  4. Gallone G, Carpi F, De Rossi D, Levita G, Marchetti A (2007) Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate–lead titanate. Mater Sci Eng C 27(1):110–116

    Article  Google Scholar 

  5. Yang D, Tian M, Li D, Wang W, Ge F, Zhang L (2013) Enhanced dielectric properties and actuated strain of elastomer composites with dopamine-induced surface functionalization. J Mater Chem A 1(39):12276–12284

    Article  Google Scholar 

  6. Kuo D-H, Chang C-C, Su T-Y, Wang W-K, Lin B-Y (2001) Dielectric behaviours of multi-doped BaTiO3/epoxy composites. J Eur Ceram Soc 21(9):1171–1177

    Article  Google Scholar 

  7. Joshi GM, Khatake S, Kaleemulla S, Rao NM, Cuberes T (2011) Effect of dopant and DC bias potential on dielectric properties of polyvinyl alcohol (PVA)/PbTiO3-composite films. Curr Appl Phys 11(6):1322–1325

    Article  Google Scholar 

  8. Liu S, Tian M, Yan B, Yao Y, Zhang L, Nishi T, Ning N (2015) High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes. Polymer 56:375–384

    Article  Google Scholar 

  9. He F, Lau S, Chan HL, Fan J (2009) High dielectric permittivity and low percolation threshold in nanocomposites based on poly (vinylidene fluoride) and exfoliated graphite nanoplates. Adv Mater 21(6):710–715

    Article  Google Scholar 

  10. CG Cameron, RS Underhill, M Rawji, JP Szabo (2004). In: Proceedings of the SPIE 5385, Smart Structures and Materials 2004, San Diego. doi:10.1117/12.539733

  11. Dang Z-M, Yao S-H, Yuan J-K, Bai J (2010) Tailored dielectric properties based on microstructure change in BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase nanocomposites. J Phys Chem C 114(31):13204–13209

    Article  Google Scholar 

  12. Li Q, Xue Q, Hao L, Gao X, Zheng Q (2008) Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Compos Sci Technol 68(10):2290–2296

    Article  Google Scholar 

  13. Zhang X, Liang G, Chang J, Gu A, Yuan L, Zhang W (2012) The origin of the electric and dielectric behavior of expanded graphite-carbon nanotube/cyanate ester composites with very high dielectric constant and low dielectric loss. Carbon 50(14):4995–5007

    Article  Google Scholar 

  14. Yang C, Lin Y, Nan C (2009) Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 47(4):1096–1101

    Article  Google Scholar 

  15. Ning N, Bai X, Yang D, Zhang L, Lu Y, Nishi T, Tian M (2014) Dramatically improved dielectric properties of polymer composites by controlling the alignment of carbon nanotubes in matrix. RSC Adv 4(9):4543–4551

    Article  Google Scholar 

  16. Liu H, Shen Y, Song Y, Nan CW, Lin Y, Yang X (2011) Carbon nanotube array/polymer core/shell structured composites with high dielectric permittivity, low dielectric loss, and large energy density. Adv Mater 23(43):5104–5108

    Article  Google Scholar 

  17. Chang J, Liang G, Gu A, Cai S, Yuan L (2012) The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 50(2):689–698

    Article  Google Scholar 

  18. Raina K (2014) Multiwall carbon nanotubes doped ferroelectric liquid crystal composites: a study of modified electrical behavior. Phys B 434:1–6

    Article  Google Scholar 

  19. Courty S, Mine J, Tajbakhsh AR, Terentjev EM (2003) Nematic elastomers with aligned carbon nanotubes: new electromechanical actuators. Europhys Lett 64(5):654–660

    Article  Google Scholar 

  20. Sun W, Tomita H, Hasegawa S, Kitamura Y, Nakano M, Suehiro J (2011) An array of interdigitated parallel wire electrodes for preparing a large-scale nanocomposite film with aligned carbon nanotubes. J Phys D 44(44):445303

    Article  Google Scholar 

  21. Osazuwa O, Kontopoulou M, Xiang P, Ye Z, Docoslis A (2014) Electrically conducting polyolefin composites containing electric field-aligned multiwall carbon nanotube structures: the effects of process parameters and filler loading. Carbon 72:89–99

    Article  Google Scholar 

  22. Park C, Wilkinson J, Banda S, Ounaies Z, Wise K, Sauti G, Lillehei P, Harrison J (2006) Aligned single-wall carbon nanotube polymer composites using an electric field. J Polym Sci Part B 44(12):1751–1762

    Article  Google Scholar 

  23. Sharma A, Tripathi B, Vijay Y (2010) Dramatic improvement in properties of magnetically aligned CNT/polymer nanocomposites. J Membr Sci 361(1):89–95

    Article  Google Scholar 

  24. Zhang Y, Ma CG (2011) Preparation and electrical properties of aligned carbon nanotubes/epoxy resin composites induced by a low magnetic field. Adv Mater Res 189:1340–1343

    Article  Google Scholar 

  25. Yao S-H, Yuan J-K, Zhou T, Dang Z-M, Bai J (2011) Stretch-modulated carbon nanotube alignment in ferroelectric polymer composites: characterization of the orientation state and its influence on the dielectric properties. J Phys Chem C 115(40):20011–20017

    Article  Google Scholar 

  26. Arjmand M, Apperley T, Okoniewski M, Sundararaj U (2012) Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50(14):5126–5134

    Article  Google Scholar 

  27. Stauffer D (1979) Scaling theory of percolation clusters. Phys Rep 54(1):1–74

    Article  Google Scholar 

  28. Song Y, Noh TW, Lee S-I, Gaines JR (1986) Experimental study of the three-dimensional ac conductivity and dielectric constant of a conductor-insulator composite near the percolation threshold. Phys Rev B 33(2):904–908

    Article  Google Scholar 

  29. Gefen Y, Aharony A, Alexander S (1983) Anomalous diffusion on percolating clusters. Phys Rev Lett 50(1):77–80

    Article  Google Scholar 

  30. Shang S, Song G, Chu X, Zhang L, Chang F (2014) AC and DC behavior of finger-sensing metal/polymer composites at various pressures. Compos Sci Technol 97:115–120

    Article  Google Scholar 

  31. Zhang J, Mine M, Zhu D, Matsuo M (2009) Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon 47(5):1311–1320

    Article  Google Scholar 

  32. Zhu D, Zhang J, Bin Y, Xu C, Shen J, Matsuo M (2012) Dielectric studies on the heterogeneity and interfacial property of composites made of polyacene quinone radical polymers and sulfonated polyurethanes. J Phys Chem A 116(9):2024–2031

    Article  Google Scholar 

  33. Zhao MQ, Zhang Q, Huang JQ, Wei F (2012) Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications. Adv Funct Mater 22(4):675–694

    Article  Google Scholar 

  34. Ren W, Cheng H-M (2005) Aligned double-walled carbon nanotube long ropes with a narrow diameter distribution. J Phys Chem B 109(15):7169–7173

    Article  Google Scholar 

  35. Repalle S, Chen J, Drozd V, Choi W (2010) The Raman spectroscopic studies of aligned MWCNTs treated under high pressure and high temperature. J Phys Chem Solids 71(8):1150–1153

    Article  Google Scholar 

  36. Cheng Q, Li M, Jiang L, Tang Z (2012) Bioinspired layered composites based on flattened double-walled carbon nanotubes. Adv Mater 24(14):1838–1843

    Article  Google Scholar 

  37. Zhu D, Bin Y, Matsuo M (2007) Electrical conducting behaviors in polymeric composites with carbonaceous fillers. J Polym Sci Part B 45(9):1037–1044

    Article  Google Scholar 

  38. Gefen Y, Aharony A, Mandelbrot BB, Kirkpatrick S (1981) Solvable fractal family, and its possible relation to the backbone at percolation. Phys Rev Lett 47(25):1771–1774

    Article  Google Scholar 

  39. Webman I, Jortner J (1977) MH Cohen (1977) Critical exponents for percolation conductivity in resistor networks. Phys Rev B 16(6):2593–2596

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the National Natural Science Foundation of China (Grant Nos. 51173007, 51473011, 51221002), and the Doctoral Science Research Foundation of the Education Ministry of China (Grant No. 20130010110005) for the respective financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Tian or Nanying Ning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 703 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Tian, M., Zhang, L. et al. Tailoring dielectric properties of polymer composites by controlling alignment of carbon nanotubes. J Mater Sci 51, 2616–2626 (2016). https://doi.org/10.1007/s10853-015-9575-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9575-y

Keywords

Navigation