Skip to main content
Log in

Capacitive humidity sensing using a metal–organic framework nanoporous thin film fabricated through electrochemical in situ growth

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The preparation of nanoporous thin film of metal–organic framework (MOF), Cu–BTC [1,3,5-benzenetricarboxylate or trimesate (BTC)], on the copper plate electrode as dielectric layer of the capacitive sensor was achieved by electrochemical in situ synthesis and film growth. An ionic liquid (IL), 1-methyl-3-octylimidazolium chloride as conducting salt, was used and aid synthesis in the electrochemical synthesis procedure. The structure and morphology of MOF film were properly characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction analysis and BET techniques. The fabricated sensor was used for the humidity measurement at ppm level using the parallel plates’ capacitive sensor structure. Capacitance variations in the presence of humidity at concentration range of 20–100 ppm was investigated using the fabricated sensor. The performances of the sensor have been examined by measuring the capacitance changes using a LCR meter [inductance (L), capacitance (C), and resistance (R)]. Variations of capacitance versus concentration were linear in the range of humidity concentrations which was used here. Sensitivity of the fabricated sensor was 1.13 pF/ppm. Limit of detection (LOD) of the fabricated sensor calculated as low as 5.45 ppm. n-Hexane and toluene vapors as nonpolar analytes were used to investigate the selectivity of the sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Boudaden, M. Steinmaßl, H. Endres, A. Drost, I. Eisele, C. Kutter, P. Muller, Polyimide-based capacitive humidity sensor. Sensors 1, 1516 (2018)

    Article  Google Scholar 

  2. M. Pal, D. Saha, D.K. Ghara, Nanoporous ɣ-alumina based novel sensor to detect trace moisture in high temperature and high pressure environment. Sens. Actuators B 222, 1043–1049 (2016)

    Article  Google Scholar 

  3. X.J. Li, L.L. Wang, H.Y. Wang, W.C. Wang, K. Li, X.C. Wang, Capacitive humidity sensing properties of ZnO cauliflowers grown on silicon nanoporous pillar array. Sens. Actuators B 177, 740–744 (2013)

    Article  Google Scholar 

  4. Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sensor Lett. 3, 274–295 (2005)

    Article  Google Scholar 

  5. F. Hossein-Babaei, P. Shabani, A gold/organic semiconductor diode for ppm-level humidity sensing. Sens. Actuators B 205, 143–150 (2014)

    Article  Google Scholar 

  6. T. Islam, A.T. Nimal, U. Mittal, M.U. Sharma, A micro interdigitated thin film metal oxide capacitive sensor for measuring moisture in the range of 175–625 ppm. Sens. Actuators B 221, 357–364 (2015)

    Article  Google Scholar 

  7. T. Islam, L. Kumar, S.A. Khan, A novel sol–gel thin film porous alumina based capacitive sensor for measuring trace moisture in the range of 2.5–25 ppm. Sens. Actuators B 173, 377–384 (2012)

    Article  Google Scholar 

  8. D.T. Phan, I. Park, A.R. Park, C.M. Park, K.J. Jeon, Black P/graphene hybrid: a fast response humidity sensor with good reversibility and stability. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-10848-3

    Google Scholar 

  9. M.B. Erande, M. Pawar, D.J. Late, Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets. ACS Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.5b10247

    Google Scholar 

  10. S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6, 2345–2352 (2014)

    Article  Google Scholar 

  11. T. Mlsna, S. Dissanayake, C. Vanlangenberg, S.V. Patel, Conducting absorbent composite for parallel plate chemicapacitive microsensors with improved selectivity. Sens. Actuators B 206, 548–554 (2015)

    Article  Google Scholar 

  12. H.M. Heitzer, T.J. Marks, M.A. Ratner, Computation of dielectric response in molecular solids for high capacitance organic dielectrics. Acc. Chem. Res. 49, 1614–1623 (2016)

    Article  Google Scholar 

  13. Z. Ahmad, Q. Zafar, K. Sulaiman, R. Akram, S. Khasan, Karimov, A humidity sensing organic-inorganic composite for environmental monitoring. Sensors 13, 3615–3624 (2013)

    Article  Google Scholar 

  14. L. Sun, Y. Liu, J. Zhang, F. Xu, T. Zhang, W. You, Y. Zhao, J. Zeng, Z. Cao, D. Yang, Lithium-based 3D coordination polymer with hydrophilic structure for sensing of solvent molecules. Cryst. Growth Des. 8, 3127–3129 (2008)

    Article  Google Scholar 

  15. B. Bahreyni, A.H. Khoshaman, Application of metal organic framework crystals for sensing of volatile organic gases. Sens. Actuators B 162, 114–119 (2012)

    Article  Google Scholar 

  16. M.D. Allendorf, V. Stavila, A.A. Talin, MOF-based electronic and optoelectronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014)

    Article  Google Scholar 

  17. M.D. Allendorf, T. By Scott, J.A. Meek, Greathouse, Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv. Mater. 23, 249–267 (2011)

    Article  Google Scholar 

  18. D. Liu, W. Zhang, H. Huang, Q. Yang, Y. Xiao, Q. Ma, C. Zhong, A new metal–organic framework with high stability based on zirconium for sensing small molecules. Microporous Mesoporous Mater. 171, 118–124 (2013)

    Article  Google Scholar 

  19. M. Allendorf, L.E. Kreno, K. Leong, O.K. Farha, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)

    Article  Google Scholar 

  20. J.K. Fischer, P. Sippel, D. Denysenko, P. Lunkenheimer, D. Volkmer, A. Loidl, Metal-organic frameworks as host materials of confined supercooled liquids. J. Chem. Phys. 143(15), 154505 (2015)

    Article  Google Scholar 

  21. M.G. Campbell, M. Dinca, Metal–organic frameworks as active materials in electronic sensor devices. Sensors 17, 1108 (2017)

    Article  Google Scholar 

  22. S. Qiu, J. Liu, F. Sun, F. Zhang, Z. Wang, R. Zhang, C. Wang, In situ growth of continuous thin metal–organic framework film for capacitive humidity sensing. J. Mater. Chem. 21, 3775 (2011)

    Article  Google Scholar 

  23. S. Qiu, G. Zhu, H. Guo, I.J. Hewitt, Twin copper source” growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J. Am. Chem. Soc. 131, 1646–1647 (2009)

    Article  Google Scholar 

  24. R.A. Fischer, A. Betard, Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012)

    Article  Google Scholar 

  25. R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B.F. Sels, D.E. De Vos, Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem. Mater. 21, 2580–2582 (2009)

    Article  Google Scholar 

  26. Z. Li, R. Li, J. Du, Y. Luan, Y. Xue, H. Zou, G. Zhuang, Ionic liquid precursor-based synthesis of CuO nanoplates for gas sensing and amperometric sensing applications. Sens. Actuators B 168, 156–164 (2012)

    Article  Google Scholar 

  27. W.S. Ahn, S.H. Kim, S.T. Yang, J. Kim, Sonochemical synthesis of Cu3(BTC)2 in a deep eutectic mixture of choline chloride/dimethyl urea. Bull. Korean Chem. Soc. 32, 2783 (2011)

    Article  Google Scholar 

  28. J. Dong, L. Liu, H. Wei, L. Zhang, J. Li, Ionothermal synthesis of the metal-organic framework compound Cu3(BTC)2. Stud. Surf. Sci. Catal. 174, 459–462 (2008)

    Article  Google Scholar 

  29. J. Bowers, C.P. Butts, P.J. Martin, M.C. Vergara-Gutierrez, Aggregation behavior of aqueous solutions of ionic liquids. Langmuir 20, 2191–2198 (2004)

    Article  Google Scholar 

  30. M.S. Hosseini, S. Zeinali, M.H. Sheikhi, Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sens. Actuators B 230, 9–16 (2016)

    Article  Google Scholar 

  31. K.S. Rajan, L. Brinda, J. Bosco Balagura, Rayappan, Synthesis and characterization of MOF-199: a potential sensing material. J. Appl. Sci. 12, 1778–1780 (2012)

    Article  Google Scholar 

  32. S. Loera-Serna, M.A. Oliver-Tolentino, M. de Lourdes Lopez-Nunez, A. Santana-Cruz, A. Guzman-Vargas, R. Cabrera-Sierra, H.I. Beltran, J. Flores, Electrochemical behavior of [Cu3(BTC)2] metal–organic framework: the effect of the method of synthesis. J. Alloys Compd. 540, 113–120 (2012)

    Article  Google Scholar 

  33. MdaS. Pinto, C. Augusto Sierra-Avila, J.P. Hinestroza, In situ synthesis of a Cu-BTC metal-organic framework (MOF 199) onto cellulosic fibrous substrates: cotton. Cellulose 19, 1771–1779 (2012)

    Article  Google Scholar 

  34. E. Zampetti, S. Pantalei, A. Pecora, A. Valletta, L. Maiolo, A. Minotti, A. Macagnano, G. Fortunato, A. Bearzotti, Design and optimization of an ultrathin flexible capacitive humidity sensor. Sens. Actuators B 4, 302–307 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the nanotechnology research Institute of Shiraz University and the ministry of science and technology as providers of financial sum, facilities, contributors, etc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zeinali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M.S., Zeinali, S. Capacitive humidity sensing using a metal–organic framework nanoporous thin film fabricated through electrochemical in situ growth. J Mater Sci: Mater Electron 30, 3701–3710 (2019). https://doi.org/10.1007/s10854-018-00652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00652-8

Navigation