Skip to main content
Log in

Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe2O4 nanoparticles has been estimated to be ~ 6.5 nm. It is assumed that the thin film of organic–ceramic hybrid matrix (TMBHPET:CoFe2O4) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe2O4/Al) has been investigated at three different frequencies of the AC applied voltage (V rms ~ 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity ~560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30–99 % RH), small hysteresis (~2.3 %), and relatively quicker response and recovery times (~12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal S, Sharma G, Manchanda R (2001) Electrical conduction in (Ba, Sr) TiO3 thin film MIS capacitor under humid conditions. Solid State Commun 119:681–686

    Article  Google Scholar 

  • Ahmad Z, Sayyad M, Saleem M, Karimov KS, Shah M (2008) Humidity-dependent characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type cell. Phys E 41:18–22

    Article  Google Scholar 

  • Ahmad Z, Zafar Q, Sulaiman K, Akram R, Karimov KS (2013) A humidity sensing organic-inorganic composite for environmental monitoring. Sensors 13:3615–3624

    Article  Google Scholar 

  • Al-Sehemi AG, Irfan A, Asiri AM, Ammar YA (2012a) Molecular design of new hydrazone dyes for dye-sensitized solar cells: synthesis, characterization and DFT study. J Mol Struct 1019:130–134

    Article  Google Scholar 

  • Al-Sehemi AG, Irfan A, Asiri AM, Ammar YA (2012b) Synthesis, characterization and DFT study of methoxybenzylidene containing chromophores for DSSC materials. Spectrochim Acta A 91:239–243

    Article  Google Scholar 

  • Al-Sehemi AG, Al-Assiri MS, Kalam A, Zafar Q, Azmer MI, Sulaiman K, Ahmad Z (2016) Sensing performance optimization by tuning surface morphology of organic (D-π-A) dye based humidity sensor. Sensor Actuat B 231:30–37

    Article  Google Scholar 

  • Arshaka K, Twomey K, Egan D (2002) A ceramic thick film humidity sensor based on MnZn ferrite. Sensors 2:50–61

    Article  Google Scholar 

  • Azmer MI, Ahmad Z, Sulaiman K, Al-Sehemi AG (2015) Humidity dependent electrical properties of an organic material DMBHPET. Measurement 61:180–184

    Article  Google Scholar 

  • Azmer MI, Ahmad Z, Sulaiman K, Touati F (2016a) Morphological and structural properties of VoPcPhO: P3HT composite thin films. Mater Lett 164:605–608

    Article  Google Scholar 

  • Azmer MI, Zafar Q, Ahmad Z, Sulaiman K (2016b) Humidity sensor based on electrospun MEH-PPV: PVP microstructured composite. RSC Adv 6:35387–35393

    Article  Google Scholar 

  • Bässler H, Köhler A (2012) Charge transport in organic semiconductors. Unimolecular and Supramolecular Electronics I. Springer, New York, pp 1–65

    Google Scholar 

  • Björkqvist M, Salonen J, Paski J, Laine E (2004) Characterization of thermally carbonized porous silicon humidity sensor. Sens Actuat A 112:244–247

    Article  Google Scholar 

  • Björkqvist M, Paski J, Salonen J, Lehto V-P (2006) Studies on hysteresis reduction in thermally carbonized porous silicon humidity sensor. IEEE Sens J 6:542–547

    Article  Google Scholar 

  • Caliendo C, Verona E, D’Amico A, Furlani A, Iucci G, Russo M (1993) Surface acoustic wave humidity sensor. Sens Actuat B 16:288–292

    Article  Google Scholar 

  • Calixto S, Andres MV (2015) Water vapor sensors based on the swelling of relief gelatin gratings. Adv Mater Sci Eng 2015:1–5

    Article  Google Scholar 

  • Chani MTS, Karimov KS, Khalid FA, Raza K, Farooq MU, Zafar Q (2012) Humidity sensors based on aluminum phthalocyanine chloride thin films. Phys E 45:77–81

    Article  Google Scholar 

  • Chani MTS, Karimov KS, Khalid FA, Moiz SA (2013) Polyaniline based impedance humidity sensors. Solid State Sci 18:78–82

    Article  Google Scholar 

  • Chen Z, Lu C (2005) Humidity sensors: a review of materials and mechanisms. Sens Lett 3:274–295

    Article  Google Scholar 

  • Chow L, Yuen M, Chan P, Cheung A (2001) Reactive sputtered TiO2 thin film humidity sensor with negative substrate bias. Sens Actuat B 76:310–315

    Article  Google Scholar 

  • Comini E, Ferroni M, Guidi V, Faglia G, Martinelli G, Sberveglieri G (2002) Nanostructured mixed oxides compounds for gas sensing applications. Sens Actuat B 84:26–32

    Article  Google Scholar 

  • Doroftei C, Rezlescu E, Rezlescu N, Popa P (2006) Microstructure and humidity sensitive properties of MgFe ~ 2O–4 ferrite with Sn and Mo substitutions prepared by self-combustion method. J Optoelectron Adv Mater 8:1012

    Google Scholar 

  • Farahani H, Wagiran R, Hamidon MN (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14:7881–7939

    Article  Google Scholar 

  • Gadkari A, Shinde T, Vasambekar P (2011) Ferrite gas sensors. IEEE Sens J 11:849–861

    Article  Google Scholar 

  • Ghara DK, Saha D, Sengupta K (2008) Implementation of linear trace moisture sensor by nano porous thin film moisture sensor and NLAmp. Int J Smart Sens Intell Syst 1:955–969

    Google Scholar 

  • Han G, Shi G (2007) Porous polypyrrole/polymethylmethacrylate composite film prepared by vapor deposition polymerization of pyrrole and its application for ammonia detection. Thin Solid Films 515:6986–6991

    Article  Google Scholar 

  • Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251

    Article  Google Scholar 

  • Joulazadeh M, Navarchian AH, Niroomand M (2014) A comparative study on humidity sensing performances of polyaniline and polypyrrole nanostructures. Adv Polym Tech 33:21461

    Article  Google Scholar 

  • Juhász L, Váss-Vamai A, Timár-Horváth V, Desmulliez MP, Dhariwal RS (2008) Porous alumina based capacitive MEMS RH sensor. In: IEEE Symposium on design, test, integration and packaging of MEMS/MOEMS, 2008. MEMS/MOEMS 2008, pp 381–385

  • Kang B, Jang M, Chung Y, Kim H, Kwak SK, Oh JH, Cho K (2014) Enhancing 2D growth of organic semiconductor thin films with macroporous structures via a small-molecule heterointerface. Nat Commun 5(7):2302–2315

    Google Scholar 

  • Karimov KS, Cheong KY, Saleem M, Murtaza I, Farooq M, Noor AFM (2010) Ag/PEPC/NiPc/ZnO/Ag thin film capacitive and resistive humidity sensors. J Semicond 31:054002

    Article  Google Scholar 

  • Karimov KS, Saleem M, Karieva Z, Mateen A, Chani MTS, Zafar Q (2012) Humidity sensing properties of Cu2O-PEPC nanocomposite films. J Semicond 33:073001

    Article  Google Scholar 

  • Karimov K, Moiz S, Tahir MM, Ahmed N, Tariq R, Abbas S, Zafar Q (2014) Nickel phthalocynanine-metal Schottky diode as photodetector. J Optoelectron Adv Mater 16:1430–1435

    Google Scholar 

  • Kayahan E (2015) Porous silicon based humidity sensor. Acta Phys Pol A 127:1397–1399

    Article  Google Scholar 

  • Khan DN, Sayyad MH, Tahir M, Wahab F, Yaseen M, Ali M, Munawar MA (2014) The sensing of humidity by surface-type Ag/FORMYL-TIPPCu (II)/Ag sensor for environmental. Monit Surf Rev Lett 21:1450048

    Article  Google Scholar 

  • Korvink JG, Chandran L, Boltshauser T, Baltes H (1993) Accurate 3D capacitance evaluation in integrated capacitance humidity sensors. Sens Mater 4:323–335

    Google Scholar 

  • Kotnala R, Shah J, Singh B, Singh S, Dhawan S, Sengupta A (2008) Humidity response of Li-substituted magnesium ferrite. Sens Actuat B 129:909–914

    Article  Google Scholar 

  • Kumar H, Srivastava R, Negi P, Agrawal H, Asokan K (2013) Dielectric behaviour of cobalt ferrite nanoparticles. Int J Electr Electron Eng 2:59–66

    Google Scholar 

  • Laugier M (1981) Adhesion and internal stress in thin films of aluminium. Thin Solid Films 79:15–20

    Article  Google Scholar 

  • Li Y, M-j Yang, She Y (2002) A novel resistive humidity sensor based on sodium polystyrenesulfonate/TiO2 nanocomposites. Chin J Polym Sci 20:237–241

    Google Scholar 

  • Li Y, Yang M, She Y (2004) Humidity sensors using in situ synthesized sodium polystyrenesulfonate/ZnO nanocomposites. Talanta 62:707–712

    Article  Google Scholar 

  • Makinudin AHA, Supangat A (2016) Improving the properties of VTP by incorporating fullerene. RSC Adv 6:30963–30971

    Article  Google Scholar 

  • Mittal K (1976) Adhesion measurement of thin films. Act Passive Electron Compon 3:21–42

    Google Scholar 

  • Moiz SA, Ahmed MM, Karimov KS (2005) Effects of temperature and humidity on electrical properties of organic semiconductor orange dye films deposited from solution. Jpn J Appl Phys 44:1199

    Article  Google Scholar 

  • Murtaza I, Karimov KS, Ahmad Z, Qazi I, Mahroof-Tahir M, Khan T, Amin T (2010) Humidity sensitive organic field effect transistor. J Semicond 31:054001

    Article  Google Scholar 

  • Muthurani S, Balaji M, Gautam S, Chae KH, Song J-H, Padiyan DP, Asokan K (2011) Magnetic and Humidity-Sensing Properties of Nanostructured Cux Co1−x Fe2O4 Synthesized via Autocombustion. J Nanosci Nanotechnol 11:5850–5855

    Article  Google Scholar 

  • Naseri MG, Saion EB, Ahangar HA, Shaari AH, Hashim M (2010) Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J Nanomater 2010:75

    Google Scholar 

  • Norell MA, Makovicky P, Clark JM (1997) Porous silica via colloidal crystallization. Nature 389:447

    Article  Google Scholar 

  • Oliveira G, Clarindo J, Santo K, Souza F Jr (2013) Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent. Mater Res 16:668–671

    Article  Google Scholar 

  • Parvatikar N, Jain S, Khasim S, Revansiddappa M, Bhoraskar S, Prasad MA (2006) Electrical and humidity sensing properties of polyaniline/WO 3 composites. Sens Actuat B 114:599–603

    Article  Google Scholar 

  • Parvatikar N, Jain S, Kanamadi C, Chougule B, Bhoraskar S, Prasad M (2007) Humidity sensing and electrical properties of polyaniline/cobalt oxide composites. J Appl Polym Sci 103:653–658

    Article  Google Scholar 

  • Petrila I, Tudorache F (2013) Humidity sensor applicative material based on copper-zinc-tungsten spinel ferrite. Mater Lett 108:129–133

    Article  Google Scholar 

  • Rabinkin L, Novikova Z (1960) Ferrites, 146 Izv Acad Nauk. USSR, Minsk

    Google Scholar 

  • Raza E et al (2016) Influence of thermal annealing on a capacitive humidity sensor based on newly synthesized macroporous PBObzT 2. Sens Actuat B 235:146–153

    Article  Google Scholar 

  • Rezlescu N, Iftimie N, Rezlescu E, Doroftei C, Popa P (2006) Semiconducting gas sensor for acetone based on the fine grained nickel ferrite. Sens Actuat B 114:427–432

    Article  Google Scholar 

  • Rittersma Z (2002) Recent achievements in miniaturised humidity sensors—a review of transduction techniques. Sens Actuat A 96:196–210

    Article  Google Scholar 

  • Saleem M et al (2008) Synthesis and photocapacitive studies of Cu (II) 5, 10, 15, 20-tetrakis (4′-isopropylphenyl) porphyrin. J Optoelectron Adv Mater 10:1468–1472

    Google Scholar 

  • Santra S et al (2015) CMOS integration of inkjet-printed graphene for humidity sensing. Sci Rep 5:17374

    Article  Google Scholar 

  • Schönberg J-N, Kondrashov V, Prokhorov A, Rühe J (2016) Capacitive humidity and dew-point sensing: Influence of wetting of surface-attached polymer monolayers on the sensor response. Sens Actuat B 222:87–94

    Article  Google Scholar 

  • Schumann S, Bon SA, Hatton R, Jones TS (2009) Open-cellular organic semiconductor thin films by vertical co-deposition using sub-100 nm nanosphere templates. Chem Commun 42:6478–6480

    Article  Google Scholar 

  • Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensors. Mrs Bulletin 24:18–24

    Article  Google Scholar 

  • Tahir M, Hassan Sayyad M, Wahab F, Ahmad Khalid F, Aziz F, Naeem S, Naeem Khalid M (2014a) Enhancement in the sensing properties of methyl orange thin film by TiO2 nanoparticles. Int J Mod Phys B 28:1450032

    Article  Google Scholar 

  • Tahir M et al (2014b) Humidity, light and temperature dependent characteristics of Au/N-BuHHPDI/Au surface type multifunctional sensor. Sens Actuat B 192:565–571

    Article  Google Scholar 

  • Ueda M, Nakamura K, Tanaka K, Kita H, Okamoto K-I (2007) Water-resistant humidity sensors based on sulfonated polyimides. Sens Actuat B 127:463–470

    Article  Google Scholar 

  • ur Rehman F et al (2015) Investigating sensing properties of poly-(dioctylfluorene) based planar sensor. Mater Sci Semicond Process 39:355–361

    Article  Google Scholar 

  • Wang J, Wan H, Lin Q (2003) Properties of a nanocrystalline barium titanate on silicon humidity sensor. Meas Sci Technol 14:172

    Article  Google Scholar 

  • Wang J, Wu F-Q, Shi K-H, Wang X-H, Sun P-P (2004) Humidity sensitivity of composite material of lanthanum ferrite/polymer quaternary acrylic resin. Sens Actuat B 99:586–591

    Article  Google Scholar 

  • Wang S, Kang Y, Wang L, Zhang H, Wang Y, Wang Y (2013) Organic/inorganic hybrid sensors: a review. Sens Actuat B 182:467–481

    Article  Google Scholar 

  • Wang P, Su J, Su C-F, Dai W, Cernigliaro G, Sun H (2014) An ultrasensitive quartz crystal microbalance-micropillars based sensor for humidity detection. J Appl Phys 115:224501

    Article  Google Scholar 

  • Williams RC, Backus RC (1949) The electron-micrographic structure of shadow-cast films and surfaces. J Appl Phys 20:98–106

    Article  Google Scholar 

  • Zafar Q, Sulaiman K (2016) Utility of PCDTBT polymer for the superior sensing parameters of electrical response based relative humidity sensor. React Funct Polym 105:45–51

    Article  Google Scholar 

  • Zafar Q, Aziz F, Sulaiman K (2016) Eco-benign visible wavelength photodetector based on phthalocyanine-low bandgap copolymer composite blend. RSC Adv 6:13101–13109

    Article  Google Scholar 

  • Zhang Y, Wu J, Zhang Y, Guo W, Ruan S (2014) Characterization and Humidity Sensing Properties of the Sensor Based on Na2Ti3O7 Nanotubes. J Nanosci Nanotechnol 14:4303–4307

    Article  Google Scholar 

  • Zhang C, Chen P, Hu W (2015) Organic field-effect transistor-based gas sensors. Chem Soc Rev 44:2087–2107

    Article  Google Scholar 

Download references

Acknowledgment

The authors (Q. Z, M. I. A., and K. S.) are thankful to the Ministry of Education for the financial support under High Impact Research (HIR) Grant UM.S/625/3/HIR/MOE/26 with account number UM.0000080/HIR.C3 and University Malaya Research Grant (UMRG) under Grant number RP007A-13AFR. The author (A. G. S.) is thankful to the Promising Centre for Sensors and Electronic Devices (PCSED) at Najran University, Kingdom of Saudi Arabia for support of this research through Grant number PCSED-005-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qayyum Zafar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, Q., Azmer, M.I., Al-Sehemi, A.G. et al. Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles. J Nanopart Res 18, 186 (2016). https://doi.org/10.1007/s11051-016-3488-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3488-9

Keywords

Navigation