Skip to main content
Log in

Ink-jet printed transparent and flexible electrodes based on silver nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent, silver (Ag) nanowires (NWs) have received much attention as an alternative to indium tin oxide (ITO) for transparent electrode application in printed and transparent electronics. However, Ag NWs have its breakup problem by joule heating during current. To overcome this problem, this paper demonstrates a mesh type electrode based on Ag nanoparticles, which is fabricated on PET substrate through an ink-jet printing technique. The proposed electrode has a low resistance of 108.5 Ω/sq and a good optical transparency around 92% at 300–800 nm. It has a relationship that the sheet resistance drops with the decrease of transparency due to depending hole size and the best curing temperature is found to be 120 °C. It also demonstrate an excellent flexible stability, showing < 2% resistance change after over 100 bending cycles. These resistance and transparency are similar with that of commercially ITO electrode, and are superior to other alternatives such as carbon nanotube electrodes. The proposed electrode can be considered as a commercial electrode to as an alternative to ITO electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Lewis, D. Paine, MRS Bull. 25, 22 (2000)

    Article  Google Scholar 

  2. Z.C. Wu, Z.H. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Science 305, 1273 (2004)

    Article  Google Scholar 

  3. H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, J. Appl. Phys. 86, 6451 (1999)

    Article  Google Scholar 

  4. Y. Leterrier, L. Medico, F. Demarco, J.A.E. Manson, U. Betz, M.F. Escol, M. Kharrazi Olsson, F. Atamny, Thin Solid Films 460, 156 (2004)

    Article  Google Scholar 

  5. R. Fan, C. Zhang, X. Yin, et al. J. Mater. Sci.: Mater. Electron. 28, 10092 (2017)

    Google Scholar 

  6. Y. Zhang, S. Zhao, X. Zeng, et al. J. Mater. Sci.: Mater. Electron. 28, 9519 (2017)

    Google Scholar 

  7. Q. Yu, W. Li, J. Mater. Sci.: Mater. Electron. 28, 10758 (2017)

    Google Scholar 

  8. S. Kirchmeyer, K. Reuter, J. Mater. Chem. 15, 2077 (2005)

    Article  Google Scholar 

  9. A.R. Rathmell, S.M. Bergin, Y.-L. Hua, Z.-Y. Li, B.J. Wiley, Adv. Mater. 22, 3558 (2010)

    Article  Google Scholar 

  10. D. Azulai, T. Belenkova, H. Gilon, Z. Barkay, G. Markovich, Nano Lett. 9, 4246 (2009)

    Article  Google Scholar 

  11. G. Gruner, J. Mater. Chem. 16, 3533 (2006)

    Article  Google Scholar 

  12. L. Hu, D.S. Hecht, G. Gruner, Chem. Rev. 110, 5844 (2010)

    Article  Google Scholar 

  13. V.N. Popov, Mater. Sci. Eng. R. 43, 61 (2004)

    Article  Google Scholar 

  14. L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, Y. Cui, ACS Nano 4, 2963 (2010)

    Google Scholar 

  15. J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Nano Lett. 8, 692 (2008)

    Google Scholar 

  16. H.H. Khaligh, I.A. Goldthorpe, Nanoscale Res. Lett. 8, 235 (2013)

    Article  Google Scholar 

  17. M.I. Khan, K.A. Bhatti, R. Qindeel, et al. J. Mater. Sci.: Mater. Electron. 28, 9471 (2017)

    Google Scholar 

  18. D.L. Xu, Y. Xiong, M.H. Tang, B.W. Zeng, Y.G. Xiao, J.Q. Li, L. Liu, S.A. Yan, Z.H. Tang, L.H. Wang, X.J. Zhu, R.W. Li, ECS Solid State Lett. 2, Q69 (2013)

    Article  Google Scholar 

  19. X.W. Tang, X.B. Zhu, J.M. Dai, J. Yang, L. Chen, Y.P. Sun, J. Appl. Phys. 113, 043706 (2013)

    Article  Google Scholar 

  20. C. Schindler, S.C.P. Thermadam, R. Waser, M.N. Kozicki, IEEE Trans. Electron. Dev. 54, 2762 (2007)

    Article  Google Scholar 

  21. Y. Zhang, Z.Q. Duan, R. Li, C.J. Ku, P. Reyes, A. Ashrafi, Y.C. Lu, J. Electron. Mater. 41, 2880 (2012)

    Article  Google Scholar 

  22. S.B. Long, Q. Liu, H.B. Lv, Y.T. Li, Y. Wang, S. Zhang, W.T. .Lian, K.W. Zhang, M. Wang, H.W. Xie, M. Liu, Appl. Phys. A 102, 915 (2011)

    Article  Google Scholar 

  23. W.H. Wang, R.X. Dong, X.L. Yan, B. Yang, X.L. An, IEEE Trans. Nanotechnol. 11, 1135 (2012)

    Article  Google Scholar 

  24. A. Kosarian, M. Shakiba, E.J. Farshidi, Mater. Sci.: Mater. Electron. 28, 10525 (2017)

    Google Scholar 

  25. J. Ha, J. Park, J. Ha, D. Kim, S. Chung, C. Lee, Y. Hong, Organ. Electron. 19, 147 (2015)

    Article  Google Scholar 

  26. S. Ali, J. Bae, K.H. Choi, C.H. Lee, Y.H. Doh, S. Shin, N.P. Kobayashi, Organ. Electron. 17, 121 (2015)

    Article  Google Scholar 

  27. E. Tekin, P.J. Smith, U.S. Schubert, Soft Matter 4, 703 (2008)

    Article  Google Scholar 

  28. D. Soltman, V. Subramanian, Langmuir 24, 2224 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the 2017 Scientific Promotion Program funded by Jeju National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinho Bae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, G., Bae, J. & Lee, C.H. Ink-jet printed transparent and flexible electrodes based on silver nanoparticles. J Mater Sci: Mater Electron 29, 49–55 (2018). https://doi.org/10.1007/s10854-017-7886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7886-2

Navigation