Skip to main content
Log in

One-step synthesis of conductive graphene/polyaniline nanocomposites using sodium dodecylbenzenesulfonate: preparation and properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The preparation of conducting graphene/polyaniline–sodium dodecylbenzenesulfonate (PANI–SDBS) nanocomposites using synthesised graphene as the starting material is successfully conducted in the present study. The effect of the anionic surfactant SDBS on the properties of the graphene/PANI–SDBS nanocomposites is studied. The structure and morphology of the synthesised nanocomposites are characterised by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) spectrophotometry, X-ray diffraction and atomic force microscopy (AFM). The electrical conductivity properties of the resulting nanocomposites are determined using a resistance meter measurement system. The FESEM and TEM images reveal that the addition of SDBS surfactant to the PANI transforms the nanofibers of the PANI to a nanosphere morphology of PANI–SDBS. FTIR and UV–vis studies reveal that the conductive graphene/PANI–SDBS nanocomposites are successfully synthesised. AFM characterisation shows that the addition of graphene reduces the root mean square roughness of the surface of the PANI. The electrical conductivity and thermal stability of the PANI are improved after the introduction of SDBS. The nanocomposites containing a 5 wt% graphene loading exhibit the highest electrical conductivity of 2.94 × 10−2 S/cm, which is much higher than that of PANI (9.09 × 10−6 S/cm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Wu, Y. Cheng, K. Wang, Y. Wang, A. Feng, Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging. J. Mater. Sci. 27, 5592–5599 (2016)

    CAS  Google Scholar 

  2. G. Wu, Y. Cheng, Z. Wang, K. Wang, A. Feng, In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. J. Mater. Sci. 28, 576–581 (2017)

    CAS  Google Scholar 

  3. S.H. Xie, Y.Y. Liu, J.Y. Li, Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl. Phys. Lett. 92, 243121 (2008)

    Google Scholar 

  4. G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunatillake, Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5, 37553–37567 (2015)

    CAS  Google Scholar 

  5. S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34, 783–810 (2009)

    CAS  Google Scholar 

  6. J. Yang, Y. Ding, G. Chen, C. Li, Synthesis of conducting polyaniline using novel anionic gemini surfactant as micellar stabilizer. Eur. Polym. J. 43, 3337–3343 (2007)

    CAS  Google Scholar 

  7. S. Xing, C. Zhao, T. Zhou, S. Jing, Z. Wang, Preparation and characterization of polyaniline–polypyrrole composite from polyaniline dispersions. J. Appl. Polym. Sci. 104, 3523–3529 (2007)

    CAS  Google Scholar 

  8. H. Kim, Y. Miura, C.W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22, 3441–3450 (2010)

    CAS  Google Scholar 

  9. Y. Hu, C. Bao, Chapter 5 In situ polymerization in the presence of graphene. in Polymer-Graphene Nanocomposites (The Royal Society of Chemistry, 2012), pp. 117–140

  10. M.S.H. Gong, R. Fan, L. Qian, One-step preparation of a composite consisting of graphene oxide, Prussian blue and chitosan for electrochemical sensing of hydrogen peroxide. Microchim. Acta 180, 295–301 (2013)

    CAS  Google Scholar 

  11. X. Chen, F. Meng, Z. Zhou, X. Tian, L. Shan, S. Zhu, X. Xu, M. Jiang, L. Wang, D. Hui, Y. Wang, J. Lu, J. Gou, One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6, 8140–8148 (2014)

    CAS  Google Scholar 

  12. P. Zhu, T. Yu, S. Kang, S. Guan, One-step synthesis of spherical polyaniline/graphene composites by microemulsion for supercapacitors. Int. J. Electrochem. Sci. 11, 9019–9029 (2016)

    CAS  Google Scholar 

  13. K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22, 1392–1401 (2010)

    CAS  Google Scholar 

  14. X. Fan, Z. Yang, Z. Liu, One-step synthesis of graphene/polyaniline nanotube composite for supercapacitor electrode. Chin. J. Chem. 34, 107–113 (2016)

    CAS  Google Scholar 

  15. L. Mao, K. Zhang, H.S. On Chan, J. Wu, Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J. Mater. Chem. 22, 80–85 (2012)

    CAS  Google Scholar 

  16. J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48, 487–493 (2010)

    CAS  Google Scholar 

  17. A.V. Murugan, T. Muraliganth, A. Manthiram, Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem. Mater. 21, 5004–5006 (2009)

    CAS  Google Scholar 

  18. M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009)

    CAS  Google Scholar 

  19. S.K. Sahoo, A. Mallik, Simple, fast and cost-effective electrochemical synthesis of few layer graphene nanosheets. Nano 10, 1550019 (2015)

    CAS  Google Scholar 

  20. K.-J. Ahn, Y. Lee, H. Choi, M.-S. Kim, K. Im, S. Noh, H. Yoon, Surfactant-templated synthesis of polypyrrole nanocages as redox mediators for efficient energy storage. Sci. Rep. 5, 14097 (2015)

    CAS  Google Scholar 

  21. M.O. Ansari, M.M. Khan, S.A. Ansari, I. Amal, J. Lee, M.H. Cho, pTSA doped conducting graphene/polyaniline nanocomposite fibers: thermoelectric behavior and electrode analysis. Chem. Eng. J. 242, 155–161 (2014)

    CAS  Google Scholar 

  22. Y. Li, H. Peng, G. Li, K. Chen, Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets. Eur. Polym. J. 48, 1406–1412 (2012)

    CAS  Google Scholar 

  23. Y.-C. Lin, F.-H. Hsu, T.-M. Wu, Enhanced conductivity and thermal stability of conductive polyaniline/graphene composite synthesized by in situ chemical oxidation polymerization with sodium dodecyl sulfate. Synth. Met. 184, 29–34 (2013)

    CAS  Google Scholar 

  24. N.B. Trung, T.V. Tam, H.R. Kim, S.H. Hur, E.J. Kim, W.M. Choi, Three-dimensional hollow balls of graphene–polyaniline hybrids for supercapacitor applications. Chem. Eng. J. 255, 89–96 (2014)

    CAS  Google Scholar 

  25. D. Zhou, Y. Li, J. Wang, P. Xu, X. Han, Synthesis of polyaniline nanofibers with high electrical conductivity from CTAB–SDBS mixed surfactants. Mater. Lett. 65, 3601–3604 (2011)

    CAS  Google Scholar 

  26. S. Quillard, G. Louarn, S. Lefrant, A.G. Macdiarmid, Vibrational analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys. Rev. B 50, 12496–12508 (1994)

    CAS  Google Scholar 

  27. W. Liu, J. Kumar, S. Tripathy, L.A. Samuelson, Enzymatic synthesis of conducting polyaniline in micelle solutions. Langmuir 18, 9696–9704 (2002)

    CAS  Google Scholar 

  28. A. Mirmohseni, G.G. Wallace, Preparation and characterization of processable electroactive polyaniline–polyvinyl alcohol composite. Polymer 44, 3523–3528 (2003)

    CAS  Google Scholar 

  29. C. Yan, Y.W. Kanaththage, R. Short, C.T. Gibson, L. Zou, Graphene/polyaniline nanocomposite as electrode material for membrane capacitive deionization. Desalination 344, 274–279 (2014)

    CAS  Google Scholar 

  30. Y. Yu, B. Che, Z. Si, L. Li, W. Chen, G. Xue, Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion. Synth. Met. 150, 271–277 (2005)

    CAS  Google Scholar 

  31. D. Gui, C. Liu, F. Chen, J. Liu, Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor. Appl. Surf. Sci. 307, 172–177 (2014)

    CAS  Google Scholar 

  32. H. Baniasadi, S.A.A. Ramazani, S. Mashayekhan, F. Ghaderinezhad, Preparation of conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization. Synth. Met. 196, 199–205 (2014)

    CAS  Google Scholar 

  33. Q.-C. Zhang, Y.-Y. Zhi, E.-J. Hu, J.-P. Shen, Q. Shen, Fabrication and characterization of polyaniline by doping TX100-based two surfactants. J. Polym. Res. 22, 93 (2015)

    Google Scholar 

  34. M.O. Ansari, S.K. Yadav, J.W. Cho, F. Mohammad, Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline. Compos B Eng 47, 155–161 (2013)

    CAS  Google Scholar 

  35. R. Bkakri, N. Chehata, A. Ltaief, O.E. Kusmartseva, F.V. Kusmartsev, M. Song, A. Bouazizi, Effects of the graphene content on the conversion efficiency of P3HT: graphene based organic solar cells. J. Phys. Chem. Solids 85, 206–211 (2015)

    CAS  Google Scholar 

  36. A. Lodha, S.M. Kilbey, P.C. Ramamurthy, R.V. Gregory, Effect of annealing on electrical conductivity and morphology of polyaniline films. J. Appl. Polym. Sci. 82, 3602–3610 (2001)

    CAS  Google Scholar 

  37. Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B 178, 485–493 (2013)

    CAS  Google Scholar 

  38. J. Stejskal, P. Kratochvíl, N. Radhakrishnan, Polyaniline dispersions 2. UV–vis absorption spectra. Synth. Met. 61, 225–231 (1993)

    CAS  Google Scholar 

  39. A.H. Gemeay, R.G. El-Sharkawy, I.A. Mansour, A.B. Zaki, Preparation and characterization of polyaniline/manganese dioxide composites and their catalytic activity. J. Colloid Interface Sci. 308, 385–394 (2007)

    CAS  Google Scholar 

  40. A.V. Streltsov, O.V. Morozova, N.A. Arkharova, V.V. Klechkovskaya, I.N. Staroverova, G.P. Shumakovich, A.I. Yaropolov, Synthesis and characterization of conducting polyaniline prepared by laccase-catalyzed method in sodium dodecylbenzenesulfonate micellar solutions. J. Appl. Polym. Sci. 114, 928–934 (2009)

    CAS  Google Scholar 

  41. R.C. Rathod, V.K. Didolkar, S.S. Umare, B.H. Shambharkar, Synthesis of processable polyaniline and its anticorrosion performance on 316LN stainless steel. Trans. Indian Inst. Met. 64, 431–438 (2011)

    CAS  Google Scholar 

  42. S. Ran, C. Chen, Z. Guo, Z. Fang, Char barrier effect of graphene nanoplatelets on the flame retardancy and thermal stability of high-density polyethylene flame-retarded by brominated polystyrene. J. Appl. Polym. Sci. 131, 40520 (2014)

    Google Scholar 

  43. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)

    CAS  Google Scholar 

  44. H. Hu, X. Wang, J. Wang, L. Wan, F. Liu, H. Zheng, R. Chen, C. Xu, Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem. Phys. Lett. 484, 247–253 (2010)

    CAS  Google Scholar 

  45. S. Ansari, E.P. Giannelis, Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites. J. Polym. Sci. B 47, 888–897 (2009)

    CAS  Google Scholar 

  46. S.M. Imran, A. Salman, G.N. Shao, M.S. Haider, N. Abbas, S. Park, M. Hussain, H.T. Kim, Study of the electroconductive properties of conductive polymers-graphene/graphene oxide nanocomposites synthesized via in situ emulsion polymerization., Polym. Compos. (2016). doi:10.1002/pc.24179

    Article  Google Scholar 

  47. D. Saini, T. Basu, Synthesis and characterization of nanocomposites based on polyaniline-gold/graphene nanosheets. Appl. Nanosci. 2, 467–479 (2012)

    CAS  Google Scholar 

  48. Z.A. Boeva, K.A. Milakin, M. Pesonen, A.N. Ozerin, V.G. Sergeyev, T. Lindfors, Dispersible composites of exfoliated graphite and polyaniline with improved electrochemical behaviour for solid-state chemical sensor applications. RSC Adv. 4, 46340–46350 (2014)

    CAS  Google Scholar 

  49. A.K. Sharma, G. Chaudhary, I. Kaushal, U. Bhardwaj, A. Mishra, Studies on nanocomposites of polyaniline using different substrates. Am. J. Polym. Sci. 5, 1–6 (2015)

    Google Scholar 

  50. O.D. Iakobson, O.L. Gribkova, A.R. Tameev, V.V. Kravchenko, A.V. Egorov, A.V. Vannikov, Conductive composites of polyaniline–polyacid complex and graphene nanostacks. Synth. Met. 211, 89–98 (2016)

    CAS  Google Scholar 

  51. A. Pron, F. Genoud, C. Menardo, M. Nechtschein, The effect of the oxidation conditions on the chemical polymerization of polyaniline. Synth. Met. 24, 193–201 (1988)

    CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to the Malaysian Ministry of Education (MOE) for awarding us a Fundamental Research Grant (Grant No. 6071284) and Universiti Sains, Malaysia that made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mariatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chin, S.Y., Abdullah, T.K. & Mariatti, M. One-step synthesis of conductive graphene/polyaniline nanocomposites using sodium dodecylbenzenesulfonate: preparation and properties. J Mater Sci: Mater Electron 28, 18418–18428 (2017). https://doi.org/10.1007/s10854-017-7788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7788-3

Navigation