Skip to main content

Advertisement

Log in

Outstanding performances of Ni2CoS4/expanded graphite with ultrafine Ni2CoS4 particles for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel sulfides are desirable electrode materials for supercapacitors, while low electronic conductivity and poor cyclic stability restrict their wide applications. Herein, Ni2CoS4/expanded graphite (Ni2CoS4/EG) composite was prepared in mixed solvents of ethylene glycol and H2O via a rapid and energy-saving microwave heating method. Scanning transmission electron microscopy image shows that Ni2CoS4 particles are ultrafine with an average diameter of 2 nm and uniformly distributed on expanded graphite. The specific capacitance of the Ni2CoS4/EG composite can reach up to 2056.8 F g−1 at 5 A g−1 as compared to 1574.4 F g−1 of Ni3S4, 229.1 F g−1 of CoS and 1516.6 F g−1 of Ni2CoS4; and even at higher current density of 30 A g−1, the specific capacitance can still demonstrates 1923.3 F g−1, thus 92.5% of rate capability can be achieved as the current density increases from 5 to 30 A g−1. Moreover, it exhibits an excellent stability of 94.4% after cycling at current density of 30 A g−1 for 2000 cycles. The composite delivers high initial capacitance, excellent rate capability, and fantastic stability. Furthermore, the fabricated AC//Ni2CoS4/EG asymmetric supercapacitor also exhibits a high specific capacitance of 120.3 F g−1 at 0.5 A g−1, an superior cycle life (91% at 5 A g−1 for 5000 cycles), and an extremely high energy density of 52 Wh kg−1 at 477 W kg−1. This work offers a new insight to synthesize ultrafine bimetallic sulfides, and the superior high performances of the Ni2CoS4/EG composite can provide practical applications in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011)

    Article  Google Scholar 

  2. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016)

    Article  Google Scholar 

  3. A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016)

    Article  Google Scholar 

  4. J. Huang, B.G. Sumpter, V. Meunier, A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry 14, 6614–6626 (2008)

    Article  Google Scholar 

  5. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  Google Scholar 

  6. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sour. 157, 11–27 (2006)

    Article  Google Scholar 

  7. O.B.M. Hahn, F.P. Campana, R. Kötz, R. Gallay, Carbon based double layer capacitors with aprotic electrolyte solutions: the possible role of intercalation/insertion processes. Appl. Phys. A 82, 633–638 (2006)

    Article  Google Scholar 

  8. X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev. 4, 453–489 (2017)

    Article  Google Scholar 

  9. C. Wang, Z. Guan, Y. Shen, S. Yu, X.-Z. Fu, R. Sun, C.-P. Wong, Shape-controlled synthesis of CoMoO4@Co1.5Ni1.5S4 hybrids with rambutan-like structure for high-performance all-solid-state supercapacitors. Chem. Eng. J. 346, 193–202 (2018)

    Article  Google Scholar 

  10. M. Xie, Z. Xu, S. Duan, Z. Tian, Y. Zhang, K. Xiang, M. Lin, X. Guo, W. Ding, Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res. 11, 216–224 (2017)

    Article  Google Scholar 

  11. P. Guo, H. Song, Y. Liu, C. Wang, FeNi2S4 QDs@C composites as a high capacity and long life anode material for lithium ion battery and ex situ investigation of electrochemical mechanism. Electrochim. Acta 258, 1173–1181 (2017)

    Article  Google Scholar 

  12. C. Ye, L. Zhang, C. Guo, D. Li, A. Vasileff, H. Wang, S.-Z. Qiao, A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium–sulfur batteries. Adv. Func. Mater. 27, 1702524 (2017)

    Article  Google Scholar 

  13. X. Zheng, Z. Han, W. Yang, F. Qu, B. Liu, X. Wu, 3D Co3O4@MnO2 heterostructures grown on a flexible substrate and their applications in supercapacitor electrodes and photocatalysts. Dalton Trans. 45, 16850–16858 (2016)

    Article  Google Scholar 

  14. W.Z.L. Zhang, H. Jiu, C. Ni, J. Chang, G. Qi, The synthesis of NiO and NiCo2O4 nanosheets by a new method and their excellent capacitive performance for asymmetric supercapacitor. Electrochim. Acta 215, 212–222 (2016)

    Article  Google Scholar 

  15. J. Sun, P. Zan, X. Yang, L. Ye, L. Zhao, Room-temperature synthesis of Fe3O4/Fe–carbon nanocomposites with Fe–carbon double conductive network as supercapacitor. Electrochim. Acta 215, 483–491 (2016)

    Article  Google Scholar 

  16. M. Li, M.F. El-Kady, J.Y. Hwang, M.D. Kowal, K. Marsh, H. Wang, Z. Zhao, R.B. Kaner, Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices. Nano Res. 11, 2836–2846 (2018)

    Article  Google Scholar 

  17. L. Ye, L. Zhao, H. Zhang, B. Zhang, H. Wang, One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. J. Mater. Chem. A 4, 9160–9168 (2016)

    Article  Google Scholar 

  18. M. Li, K.Y. Ma, J.P. Cheng, D. Lv, X.B. Zhang, Nickel–cobalt hydroxide nanoflakes conformal coating on carbon nanotubes as a supercapacitive material with high-rate capability. J. Power Sourc. 286, 438–444 (2015)

    Article  Google Scholar 

  19. F. Lai, Y. Huang, Y.-E. Miao, T. Liu, Controllable preparation of multi-dimensional hybrid materials of nickel–cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors. Electrochim. Acta 174, 456–463 (2015)

    Article  Google Scholar 

  20. R. Qu, S. Tang, X. Qin, J. Yuan, Y. Deng, L. Wu, J. Li, Z. Wei, Expanded graphite supported Ni(OH)2 composites for high performance supercapacitors. J. Alloy. Compd. 728, 222–230 (2017)

    Article  Google Scholar 

  21. R. Qu, Z. Dai, ShuihuaTang,Z. Zhu, G.M. Haarberg, Facile preparation of layered Ni(OH)2/graphene composite from expanded graphite. Int. J. Electrochem. Sci. 12, 8833–8846 (2017)

    Article  Google Scholar 

  22. Z. Gao, C. Chen, J. Chang, L. Chen, P. Wang, D. Wu, F. Xu, K. Jiang, Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem. Eng. J. 343, 572–582 (2018)

    Article  Google Scholar 

  23. P. Zhang, B.Y. Guan, L. Yu, X.W.D. Lou, Formation of double-shelled zinc-cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angew. Chem. 56, 7141–7145 (2017)

    Article  Google Scholar 

  24. J. Wu, X. Shi, W. Song, H. Ren, C. Tan, S. Tang, X. Meng, Hierarchically porous hexagonal microsheets constructed by well-interwoven MCo2S4 (M = Ni, Fe, Zn) nanotube networks via two-step anion-exchange for high-performance asymmetric supercapacitors. Nano Energy 45, 439–447 (2018)

    Article  Google Scholar 

  25. C. Zhang, X. Cai, Y. Qian, H. Jiang, L. Zhou, B. Li, L. Lai, Z. Shen, W. Huang, Electrochemically synthesis of nickel cobalt sulfide for high-performance flexible asymmetric supercapacitors. Adv. Sci. 5, 1700375 (2018)

    Article  Google Scholar 

  26. X. Yang, H. Niu, H. Jiang, Z. Sun, Q. Wang, F. Qu, One-step synthesis of NiCo2S4/graphene composite for asymmetric supercapacitors with superior performances. Chemelectrochem 5, 1576–1585 (2018)

    Article  Google Scholar 

  27. Z.C. Yan, T. Wang, Y. Lei, Z. Ai, X. Peng, H. Yan, Z.M.W. Li, Y.-L. Jijun Zhang, Chueh, Hollow NiCo2S4 nanospheres hybridized with 3D hierarchical porous rGO/Fe2O3 composites toward high-performance energy storage device. Adv. Energy Mater. 8, 1703453 (2018)

    Article  Google Scholar 

  28. T. Wang, B. Zhao, H. Jiang, H.-P. Yang, K. Zhang, M.M.F. Yuen, X.-Z. Fu, R. Sun, C.-P. Wong, Electro-deposition of CoNi2S4 flower-like nanosheets on 3D hierarchically porous nickel skeletons with high electrochemical capacitive performance. J. Mater. Chem. A 3, 23035–23041 (2015)

    Article  Google Scholar 

  29. F. Zhao, W. Huang, H. Zhang, D. Zhou, Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors. Appl. Surf. Sci. 426, 1206–1212 (2017)

    Article  Google Scholar 

  30. L.S. Shuihua Tang, Z. Dai, Z. Zhu, H. Huangfu, High supercapacitive performance of Ni(OH)2/XC-72 composite prepared by microwave-assisted method. RSC Adv. 5, 43164–43171 (2015)

    Article  Google Scholar 

  31. J. Li, M. Wei, W. Chu, N. Wang, High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chem. Eng. J. 316, 277–287 (2017)

    Article  Google Scholar 

  32. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 5, 2188–2196 (2013)

    Article  Google Scholar 

  33. X. Qin, S. Tang, J. Yuan, Y. Deng, R. Qu, L. Wu, J. Li, Enhanced performances of functionalized XC-72 supported Ni(OH)2 composites for supercapacitors. New J. Chem. 41, 11372–11382 (2017)

    Article  Google Scholar 

  34. B. Wang, Y. Qin, W. Tan, Y. Tao, Y. Kong, Smartly designed 3D N-doped mesoporous graphene for high-performance supercapacitor electrodes. Electrochim. Acta 241, 1–9 (2017)

    Article  Google Scholar 

  35. C. Wei, N. Zhan, J. Tao, S. Pang, L. Zhang, C. Cheng, D. Zhang, Synthesis of hierarchically porous NiCo2S4 core-shell hollow spheres via self-template route for high performance supercapacitors. Appl. Surf. Sci. 453, 288–296 (2018)

    Article  Google Scholar 

  36. P. Guo, H. Song, Y. Liu, C. Wang, CuFeS2 quantum dots anchored in carbon frame: superior lithium storage performance and the study of electrochemical mechanism. ACS Appl. Mater. Interfaces 9, 31752–31762 (2017)

    Article  Google Scholar 

  37. X. Chen, D. Chen, X. Guo, R. Wang, H. Zhang, Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors. ACS Appl. Mater. Interfaces 9, 18774–18781 (2017)

    Article  Google Scholar 

  38. J. Yang, C. Yu, C. Hu, M. Wang, S. Li, H. Huang, K. Bustillo, X. Han, C. Zhao, W. Guo, Z. Zeng, H. Zheng, J. Qiu, Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Func. Mater. 28, 1803272 (2018)

    Article  Google Scholar 

  39. M.L. Jun, Y. Liang, M. Chai, L. Luo, Li, TEOA-mediated formation of hollow core-shell structured CoNi2S4 nanospheres as a high-performance electrode material for supercapacitors. J. Power Sourc. 362, 123–130 (2017)

    Article  Google Scholar 

  40. L. Yao, Q. Wu, P. Zhang, J. Zhang, D. Wang, Y. Li, X. Ren, H. Mi, L. Deng, Z. Zheng, Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 30, 1706054 (2018)

    Article  Google Scholar 

  41. K. Tao, X. Han, Q. Ma, L. Han, A metal-organic framework derived hierarchical nickel–cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors. Dalton Trans. 47, 3496–3502 (2018)

    Article  Google Scholar 

  42. C.T. Chiu, D.H. Chen, One-step hydrothermal synthesis of three-dimensional porous Ni–Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors. Nanotechnol. 29, 175602 (2018)

    Article  Google Scholar 

  43. Q. Chen, J. Miao, L. Quan, D. Cai, H. Zhan, Bimetallic CoNiSx nanocrystallites embedded in nitrogen-doped carbon anchored on reduced graphene oxide for high-performance supercapacitors. Nanoscale 10, 4051–4060 (2018)

    Article  Google Scholar 

  44. R. Xu, J. Lin, J. Wu, M. Huang, L. Fan, X. He, Y. Wang, Z. Xu, A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 422, 597–606 (2017)

    Article  Google Scholar 

  45. L. Jin, B. Liu, Y. Wu, S. Thanneeru, J. He, Synthesis of mesoporous CoS2 and NixCo1–xS2 with superior supercapacitive performance using a facile solid-phase sulfurization. ACS Appl. Mater. Interfaces 9, 36837–36848 (2017)

    Article  Google Scholar 

  46. B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29, 1605051 (2017)

    Article  Google Scholar 

  47. C. Lamiel, V.H. Nguyen, M. Baynosa, D.C. Huynh, J.-J. Shim, Hierarchical mesoporous carbon sphere@nickel cobalt sulfide core–shell structures and their electrochemical performance. J. Electroanal. Chem. 771, 106–113 (2016)

    Article  Google Scholar 

  48. G.C. Lau, N.A. Sather, H. Sai, E.M. Waring, E. Deiss-Yehiely, L. Barreda, E.A. Beeman, L.C. Palmer, S.I. Stupp, Oriented multiwalled organic-Co(OH)2 nanotubes for energy storage. Adv. Func. Mater. 28, 1702320 (2018)

    Article  Google Scholar 

  49. X. Qi, W. Zheng, G. He, T. Tian, N. Du, L. Wang, NiCo2O4 hollow microspheres with tunable numbers and thickness of shell for supercapacitors. Chem. Eng. J. 309, 426–434 (2017)

    Article  Google Scholar 

  50. S.T. Leping Sui, Y. Chen, Z. Dai, H. Huangfu, X.Q. Zhentao Zhu, Y. Deng, Geir Martin Haarberg, an asymmetric supercapacitor with good electrochemical performances based on Ni(OH)2/AC/CNT and AC. Electrochim. Acta 182, 1159–1165 (2015)

    Article  Google Scholar 

  51. S.T. Leping Sui, Z. Dai, Z. Zhu, H. Huangfu, Q. Xiaolong, Supercapacitive behavior of an asymmetric supercapacitor based on a Ni(OH)2/XC-72 composite. New J. Chem. 39, 9363–9371 (2015)

    Article  Google Scholar 

  52. S.G. Mohamed, I. Hussain, J.J. Shim, One-step synthesis of hollow C–NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 10, 6620–6628 (2018)

    Article  Google Scholar 

  53. Y. Liu, Q. Lu, Z. Huang, S. Sun, B. Yu, U. Evariste, G. Jiang, J. Yao, Electrodeposition of Ni–Co–S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors. J. Alloy. Compd. 762, 301–311 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Project of Fuel Cells & Hybrid Electric Power Key Lab, Chinese Academy of Sciences (KLFC201702), the Open Project from State Key Lab of Catalysis (N-14-1), and the Innovative Research Team of Southwest Petroleum University (2015CXTD04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuihua Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1155 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, R., Tang, S., Li, Y. et al. Outstanding performances of Ni2CoS4/expanded graphite with ultrafine Ni2CoS4 particles for supercapacitor applications. J Mater Sci: Mater Electron 30, 5052–5064 (2019). https://doi.org/10.1007/s10854-019-00803-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00803-5

Navigation