Skip to main content
Log in

Growth temperature impact on film quality of hBN grown on Al2O3 using non-catalyzed borazane CVD

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hexagonal boron nitride (hBN) films were directly grown on c-plane Al2O3 substrates by low pressure thermal chemical vapor deposition (CVD) with single precursor i.e. borazane (NH3-BH3) without employing any extra catalysis. The growth temperature influence on the growth and properties of BN films were investigated. It was found that with a suitable source supply rate, the growth temperature could obviously influence the growth rate, chemical state, crystal structure and optical properties of BN films. High growth temperature depicts low thickness film grown, even there was no BN film deposited when the temperature was higher than or equal to 1400 °C. The B–N bonding type in all the deposited BN films were conformed as sp2 bonding, and films were evidenced to be amorphous BN (aBN) at lower growth temperature (i.e. less than 1350 °C) and hBN in turbostratic phase (tBN) between 1350 and 1400 °C. All the grown BN films on sapphire substrate showed good ultraviolet (UV) absorption edge near 210 nm, according to transmittance spectra. This work presents a feasible route towards combination of large-scale CVD-grown hBN film with traditional III-N compounds for applications in deep UV optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Watanabe, T. Taniguchi, Int. J. Appl. Ceram. Technol. (2011). doi:10.1111/j.1744-7402.2011.02626.x

    Google Scholar 

  2. Y. Ji, C. Pan, M. Zhang, S. Long, X. Lian, F. Miao, F. Hui, Y. Shi, L. Larcher, E. Wu, M. Lanza, Appl. Phys. Lett. (2016). doi:10.1063/1.4939131

    Google Scholar 

  3. X. Li, J. Yin, J. Zhou, W. Guo, Nanotechnology. (2014). doi:10.1088/0957-4484/25/10/105701

    Google Scholar 

  4. I. Jo, M.T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, L. Shi, Nano Lett. (2013). doi:10.1021/nl304060g

    Google Scholar 

  5. L. Zheng, G. Yongji, Z. Wu, M. Lulu, Y. Jingjiang, J.C. Idrobo, J. Jung, A.H. MacDonald, R. Vajtai, L. Jun, P.M. Ajayan, Nat. Commun. (2013) doi:10.1038/ncomms3541

    Google Scholar 

  6. G. Cassabois, P. Valvin, B. Gil, Nat. Photonics (2016). doi:10.1038/nphoton.2015.277

    Google Scholar 

  7. S.K. Jang, J. Youn, Y.J. Song, S. Lee, Sci. Rep. (2016). doi:10.1038/srep30449

    Google Scholar 

  8. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. (2010). doi:10.1038/nnano.2010.172

    Google Scholar 

  9. S.H. Kang, G. Kim, Y.K. Kwon, Phys. Chem. Chem. Phys. (2015). doi:10.1039/c4cp05478d

    Google Scholar 

  10. J. Li, S. Majety, R. Dahal, W.P. Zhao, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. (2012). doi:10.1063/1.4764533

    Google Scholar 

  11. K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. (2004). doi:10.1038/nmat1134

    Google Scholar 

  12. S. Majety, X.K. Cao, J. Li, R. Dahal, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. (2012). doi:10.1063/1.4742194

    Google Scholar 

  13. R. Dahal, J. Li, S. Majety, B.N. Pantha, X.K. Cao, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. (2011). doi:10.1063/1.3593958

    Google Scholar 

  14. H.X. Jiang, J.Y. Lin, Semicond. Sci. Technol. (2014). doi:10.1088/0268-1242/29/8/084003

    Google Scholar 

  15. K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Hofmann, D. Nezich, J.F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, J. Kong, Nano Lett. (2012). doi:10.1021/nl203249a

    Google Scholar 

  16. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Nano Lett. (2010). doi:10.1021/nl1022139

    Google Scholar 

  17. S. Park, J. Lee, H.S. Kim, J.-B. Park, K.H. Lee, S.A. Han, S. Hwang, S.-W. Kim, H.-J. Shin, ACS Nano (2015). doi:10.1021/nn505960b

    Google Scholar 

  18. M.S. Bresnehan, M.J. Hollander, M. Wetherington, K. Wang, T. Miyagi, G. Pastir, D.W. Snyder, J.J. Gengler, A.A. Voevodin, W.C. Mitchel, J.A. Robinson, J. Mater. Res. (2014). doi:10.1557/jmr.2013.323

    Google Scholar 

  19. R.Y. Tay, S.H. Tsang, M. Loeblein, W.L. Chow, G.C. Loh, J.W. Toh, S.L. Ang, E.H.T. Teo, Appl. Phys. Lett. (2015). doi:10.1063/1.4914474

    Google Scholar 

  20. B. Zhong, T. Zhang, X.X. Huang, G.W. Wen, J.W. Chen, C.J. Wang, Y.D. Huang, Mater. Lett. (2015). doi:10.1016/j.matlet.2015.03.059

    Google Scholar 

  21. T.C. Doan, S. Majety, S. Grenadier, J. Li, J.Y. Lin, H.X. Jiang, Nucl. Instrum. Methods Phys. Res. Sect. A (2015). doi:10.1016/j.nima.2015.02.045

    Google Scholar 

  22. Y. Kobayashi, K. Kumakura, T. Akasaka, T. Makimoto, Nature (2012). doi:10.1038/nature10970

    Google Scholar 

  23. N. Ouldhamadouche, A. Achour, K.A. Aissa, M. Islam, A. Ahmadpourian, A. Arman, M.A. Soussou, M. Chaker, L. Le Brizoual, M.A. Djouadi, Thin Solid Films (2017). doi:10.1016/j.tsf.2016.12.018

    Google Scholar 

  24. A. Ahmadpourian, C. Luna, A. Boochani, A. Arman, A. Achour, S. Rezaee, S. Naderi, Eur. Phys. J. Plus (2016). doi:10.1140/epjp/i2016-16381-2

    Google Scholar 

  25. A. Achour, R. Lucio-Porto, M. Chaker, A. Arman, A. Ahmadpourian, M.A. Soussou, M. Boujtita, L. Le Brizoual, M.A. Djouadi, T. Brousse, Electrochem. Commun. (2017). doi:10.1016/j.elecom.2017.02.011

    Google Scholar 

  26. R.Y. Tay, X. Wang, S.H. Tsang, G.C. Loh, R.S. Singh, H. Li, G. Mallick, E.H.T. Teo, J. Mater. Chem. C. (2014). doi:10.1039/c3tc32011a

    Google Scholar 

  27. S. Frueh, R. Kellett, C. Mallery, T. Molter, W.S. Willis, C. King’ondu, S.L. Suib, Inorg Chem. (2011). doi:10.1021/ic101020k

    Google Scholar 

  28. A.R. Jang, S. Hong, C. Hyun, S.I. Yoon, G. Kim, H.Y. Jeong, T.J. Shin, S.O. Park, K. Wong, S.K. Kwak, N. Park, K. Yu, E. Choi, A. Mishchenko, F. Withers, K.S. Novoselov, H. Lim, H.S. Shin, Nano Lett. (2016). doi:10.1021/acs.nanolett.6b01051

    Google Scholar 

  29. N.R. Glavin, M.L. Jespersen, M.H. Check, J. Hu, A.M. Hilton, T.S. Fisher, A.A. Voevodin, Thin Solid Films (2014). doi:10.1016/j.tsf.2014.07.059

    Google Scholar 

  30. M.R. Weismiller, S.Q. Wang, A. Chowdhury, S.T. Thynell, R.A. Yetter, Thermochim. Acta (2013). doi:10.1016/j.tca.2012.10.008

    Google Scholar 

  31. S. Reich, A. Ferrari, R. Arenal, A. Loiseau, I. Bello, J. Robertson, Phys. Rev. B (2005). doi:10.1103/PhysRevB.71.205201

    Google Scholar 

  32. Q. Weng, X. Wang, C. Zhi, Y. Bando, D. Golberg, ACS Nano (2013). doi:10.1021/nn305320v

    Google Scholar 

  33. Y. Kobayashi, T. Akasaka, J. Cryst. Growth (2008). doi:10.1016/j.jcrysgro.2008.07.010

    Google Scholar 

  34. N. Ghobadi, M. Ganji, C. Luna, A. Ahmadpourian, A. Arman, Opt. Quantum Electron. (2016). doi:10.1007/s11082-016-0742-4

    Google Scholar 

  35. N. Ghobadi, M. Ganji, C. Luna, A. Arman, A. Ahmadpourian, J. Mater. Sci. (2015). doi:10.1007/s10854-015-4093-x

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Plan (Nos. 2016YFB0400600, 2016YFB0400601), National Science Foundation of China (Nos. 11675198, 61376046, 61574026), the Fundamental Research Funds for the Central Universities (Nos. DUT15LK15, DUT15RC(3)016, No. DUT16LK29), Liaoning Provincial Natural Science Foundation of China (Nos. 201602453, 201602176), China Postdoctoral Science Foundation Funded Project (No. 2016M591434), The Open Fund of the State Key Laboratory on Integrated Optoelectronics (No. IOSKL2015KF18, No.IOSKL2015KF22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liang, H., Xia, X. et al. Growth temperature impact on film quality of hBN grown on Al2O3 using non-catalyzed borazane CVD. J Mater Sci: Mater Electron 28, 14341–14347 (2017). https://doi.org/10.1007/s10854-017-7294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7294-7

Navigation