Skip to main content
Log in

Chemical vapor deposition growth of magnesium-doped hexagonal boron nitride films via in situ doping

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, direct, single-step growth of bandgap-tunable magnesium-doped hexagonal boron nitride (hBN) films on silicon (100) substrates via in situ doping by low-pressure chemical vapor deposition is accomplished. Magnesium nitride is used as the magnesium source, and ammonia borane was used as a single-source precursor for boron and nitrogen for the CVD growth of Mg-doped hBN films. The grown films are analyzed by X-ray photoelectron spectroscopy, and the bandgap analysis of the Mg-doped hBN films is established for the first time by UV–vis spectroscopy. X-ray fluorescence spectroscopy is applied for the first time for qualitative and semi-quantitative analysis of the grown films. It is found that Mg is successfully incorporated into the hBN films, and Mg-doped hBN films with tunable bandgap are grown by controlling the Mg concentration in the grown films.

Graphical abstract

Kubelka-Munk function vs. Wavelength of Mg-doped hBN films

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. M. Jana, R.N. Singh, Progress in CVD synthesis of layered hexagonal boron nitride with tunable properties and their applications. Int. Mater. Rev. 63, 162–203 (2018). https://doi.org/10.1080/09506608.2017.1322833

    Article  CAS  Google Scholar 

  2. S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya, M.M. Rahman, G. Babu, S. Susarla, S.K. Saju, M.K. Tran, L.M. Sassi, M.A.S.R. Saadi, J. Lai, O. Sahin, S.M. Sajadi, B. Dharmarajan, D. Salpekar, N. Chakingal, A. Baburaj, X. Shuai, A. Adumbumkulath, K.A. Miller, J.M. Gayle, A. Ajnsztajn, T. Prasankumar, V.V.J. Harikrishnan, V. Ojha, H. Kannan, A.Z. Khater, Z. Zhu, S.A. Iyengar, P.A. da S. Autreto, E.F. Oliveira, G. Gao, A.G. Birdwell, M.R. Neupane, T.G. Ivanov, J. Taha-Tijerina, R.M. Yadav, S. Arepalli, R. Vajtai, P.M. Ajayan, Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33, 1–48 (2021).

  3. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  4. G. Cassabois, P. Valvin, B. Gil, Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 10, 262–266 (2016). https://doi.org/10.1038/nphoton.2015.277

    Article  CAS  Google Scholar 

  5. M.S. Bresnehan, M.J. Hollander, M. Wetherington, K. Wang, T. Miyagi, G. Pastir, D.W. Snyder, J.J. Gengler, A.A. Voevodin, W.C. Mitchel, J.A. Robinson, Prospects of direct growth boron nitride films as substrates for graphene electronics. J. Mater. Res. 29, 459–471 (2014). https://doi.org/10.1557/jmr.2013.323

    Article  CAS  Google Scholar 

  6. M. Sajjad, W.M. Jadwisienczak, P. Feng, Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector. Nanoscale 6, 4577–4582 (2014). https://doi.org/10.1039/c3nr05817d

    Article  CAS  Google Scholar 

  7. H. Liu, J. Meng, X. Zhang, Y. Chen, Z. Yin, D. Wang, Y. Wang, J. You, M. Gao, P. Jin, High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale 10, 5559–5565 (2018). https://doi.org/10.1039/c7nr09438h

    Article  CAS  Google Scholar 

  8. K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, M. Taniguchi, Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics 3, 591–594 (2009). https://doi.org/10.1038/nphoton.2009.167

    Article  CAS  Google Scholar 

  9. J. Wu, B. Wang, Y. Wei, R. Yang, M. Dresselhaus, Mechanics and mechanically tunable band gap in single-layer hexagonal boron-nitride. Mater. Res. Lett. 1, 200–206 (2013). https://doi.org/10.1080/21663831.2013.824516

    Article  CAS  Google Scholar 

  10. E. Almahmoud, J.A. Talla, Band gap tuning in carbon doped boron nitride mono sheet with Stone- Wales defect: a simulation study Band gap tuning in carbon doped boron nitride mono sheet with Stone-Wales defect : a simulation study. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab39a3

    Article  Google Scholar 

  11. A. Bhattacharya, S. Bhattacharya, G.P. Das, Band gap engineering by functionalization of BN sheet. Phys. Rev. B (2012). https://doi.org/10.1103/PhysRevB.85.035415.

  12. F. Meng, S. Zhang, I.H. Lee, S. Jun, C.V. Ciobanu, Strain-tunable half-metallicity in hybrid graphene-hBN monolayer superlattices. Appl. Surf. Sci. 375, 179–185 (2016). https://doi.org/10.1016/j.apsusc.2016.03.085

    Article  CAS  Google Scholar 

  13. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010). https://doi.org/10.1038/nmat2711

    Article  CAS  Google Scholar 

  14. K. Nose, H. Oba, T. Yoshida, Electric conductivity of boron nitride thin films enhanced by in situ doping of zinc. Appl. Phys. Lett. 89, 3–6 (2006). https://doi.org/10.1063/1.2354009

    Article  CAS  Google Scholar 

  15. M. Sakamoto, J.S. Speck, M.S. Dresselhaus, Cesium and bromine doping into hexagonal boron nitride. J. Mater. Res. 1, 685–692 (1986). https://doi.org/10.1557/JMR.1986.0685

    Article  CAS  Google Scholar 

  16. J. Wu, L. Yin, L. Zhang, Tuning the electronic structure, bandgap energy and photoluminescence properties of hexagonal boron nitride nanosheets via a controllable Ce 3+ ions doping. RSC Adv. 3, 7408–7418 (2013). https://doi.org/10.1039/c3ra23132a

    Article  CAS  Google Scholar 

  17. Y. Wang, G. Liu, S. Lu, H. Zhang, G. Du, X. Chen, D. Cai, B. Guo, G. Du, X. Chen, D. Cai, J. Kang, Enhancement of p-type conductivity of monolayer hexagonal boron nitride by driving Mg incorporation through low- energy path with N-rich condition. Appl. Phys. Lett. (2020). https://doi.org/10.1063/5.0004923.

  18. R. Dahal, J. Li, S. Majety, B.N. Pantha, X.K. Cao, J.Y. Lin, H.X. Jiang, Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3593958.

  19. H.X. Jiang, J.Y. Lin, Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond. Sci. Technol. (2014). https://doi.org/10.1088/0268-1242/29/8/084003.

  20. R. Trehan, Y. Lifshitz, J.W. Rabalais, Auger and x‐ray electron spectroscopy studies of h BN, c BN, and N + 2 ion irradiation of boron and boron nitride. J. Vac. Sci. Technol. A 8, 4026–4032 (1990). https://doi.org/10.1116/1.576471.

  21. T.D. Thomas, P. Weightman, Valence electronic structure of AuZn and AuMg alloys derived from a new way of analyzing Auger-parameter shifts. Phys. Rev. B. 33, 5406–5413 (1986). https://doi.org/10.1103/PhysRevB.33.5406.

  22. H. Seyama, M. Soma, X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations. J. Chem. Soc. Faraday Trans. 80, 237–248 (1984). https://doi.org/10.1039/F19848000237.

  23. J. Deng, G. Chen, Surface properties of cubic boron nitride thin films. Appl. Surf. Sci. 252, 7766–7770 (2006). https://doi.org/10.1016/j.apsusc.2005.09.066

    Article  CAS  Google Scholar 

  24. X.D. Peng, D.S. Edwards, M.A. Barteau, Reactions of O2 and H2O with magnesium nitride films. Surf. Sci. 195, 103–114 (1988). https://doi.org/10.1016/0039-6028(88)90783-2

    Article  CAS  Google Scholar 

  25. Thermo Fisher Scientific, Safety Data Sheet - Magnesium Nitride, Revis. Number 2. (2020). https://www.alfa.com/en/msds/?language=EN&subformat=AGHS&sku=41946.

  26. S. Smolek, C. Streli, N. Zoeger, P. Wobrauschek, Improved micro x-ray fluorescence spectrometer for light element analysis. Rev. Sci. Instrum. 81, 053707 (2010). https://doi.org/10.1063/1.3428739

    Article  CAS  Google Scholar 

  27. S. Landi, I.R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, C.J. Tavares, Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 341, 1–7 (2022). https://doi.org/10.1016/j.ssc.2021.114573

    Article  CAS  Google Scholar 

  28. R. Singhal, E. Echeverria, D.N. McIlroy, R.N. Singh, Synthesis of hexagonal boron nitride films on silicon and sapphire substrates by low-pressure chemical vapor deposition. Thin Solid Films 733, 138812 (2021). https://doi.org/10.1016/j.tsf.2021.138812

    Article  CAS  Google Scholar 

  29. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016). https://doi.org/10.1016/j.spmi.2015.10.044

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank the core lab facilities located at the Helmerich Research Center, School of Materials Science and Engineering, Oklahoma State University, for the use of the scanning electron microscope and for X-ray fluorescence (XRF) spectrometer. The authors also thank Rohit Bukka for assistance in XRF data collection.

Funding

Funding was provided by Oklahoma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj N. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, R., Echeverria, E., McIlroy, D.N. et al. Chemical vapor deposition growth of magnesium-doped hexagonal boron nitride films via in situ doping. Journal of Materials Research 37, 2369–2377 (2022). https://doi.org/10.1557/s43578-022-00658-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00658-3

Navigation