Skip to main content
Log in

Correlation between luminescence and crystallization characteristics of Dy3+ doped P2O5–BaO–SeO2 glasses for white LED applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ternary phosphate host glass with the basic composition (P2O5 50%, BaO 40%, SeO2 10%) with varying Dy2O3 dopants (0.125, 0.25, 0.5, 1%) were prepared by the melting and annealing technique. The prepared glasses were collectively investigated by optical, FTIR and photoluminescence spectral measurements. The work was supplemented through thermal expansion and differential thermal measurements of the glasses to be able to conduct controlled thermal heat-treatment of the parent samples and converting them to their glass–ceramics derivatives. X-ray diffraction and scanning electron microscopic studies of the glass–ceramics were conducted to identify the separated crystalline phases during thermal heat-treatment and their morphological textures. The optical spectra of the dysprosium ions-doped glasses reveal 11 absorption bands in two rows extending from 350 to 476 nm and from 754 to 1700 nm which are assumed to be originating from the excitations of the ground state 6H15/2 to different transitions. The photoluminescence spectra show two characteristic emission bands in the blue and yellow region beside one faint band. The two characteristic emission bands are assigned to 4F9/2 → 6H13/2 and 6F9/2 → 6H15/2 transitions. The CIE chromaticity coordinates have been evaluated from the emission spectra to understand the suitability of the glasses for white light emitting diode. FTIR absorption spectra of the glasses and glass–ceramics show composite broad bands within the mid IR region and the deconvoluted spectra indicate the appearance of characteristic bands due to phosphate groups besides the sharing of Se–O vibrations. The thermal expansion data show the decrease of softening temperature with the introduction of 1% Dy2O3 in conformity of the presence of RE3+ ions in modifying positions. The DTA and X-ray data have been correlated with the housing of Dy3+ ions as modifiers within the glass structure and their action on the depolymerization of phosphate network which is assumed to promote the increase of barium selenium oxide crystalline phase during the conversion to glass–ceramic derivatives and the simultaneous limited decrease of the second main barium phosphate crystalline phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.W. Martin, Eur. J. Solid State Inorg. Chem. 28, 163 (1991)

    Google Scholar 

  2. R.K. Brow, J. Non-Cryst. Solids 263(264), 1–28 (2000)

    Google Scholar 

  3. M.I. Abd El-Ati, A.A. Higazy, J. Mater. Sci. 35, 6175 (2000)

    Article  Google Scholar 

  4. E. Metwalli, M. Karabulut, D.L. Sidebottom, M.M. Morsi, R.K. Brow, J. Non-Cryst. Solids 344, 128 (2004)

    Article  Google Scholar 

  5. J.A. Wilder, J. Non-Cryst. Solids 38–39, 879 (1980)

    Article  Google Scholar 

  6. M. Karabulut, G.K. Marasinghe, C.S. Ray, G.D. Waddill, D.E. Day, Y.S. Badyal, M.L. Saboungi, S. Shastri, D. Haeffner, J. Appl. Phys. 87, 2185 (2000)

    Article  Google Scholar 

  7. G. Lakshminarayana, R. Yang, M. Mao, J. Qiu, Opti. Mater. 31, 1506 (2009)

    Article  Google Scholar 

  8. H. Ebendorff-Heidepriem, W. Seeber, D. Ehrt, J. Non-Cryst. Solids 183, 191 (1995)

    Article  Google Scholar 

  9. H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, A. Speghini, Spectroscopic properties of rare earth ions in heavy metal oxide and phosphate containing glasses. Proc. SPIE 3622, 19–30 (1999)

    Article  Google Scholar 

  10. T.T.T. Chanu, N.R. Singh, J. Mater. Sci. 28, 3909 (2017)

    Google Scholar 

  11. P. Babu, K.H. Jang, E.S. Kim, L. Shi, R. Vijaya, V. Lavín, C.K. Jayasankar, H.J. Seo, J. Non-Cryst. Solids 356, 236 (2010)

    Article  Google Scholar 

  12. K. V. Krishnaiah, K. U. Kumar, C. K. Jayasankar, Mater. Express 3(1), 61 (2013).

  13. K. Riwotzki, M. Haase, Phys. Chem. B 102(50), 10129 (1998)

    Article  Google Scholar 

  14. J. Kuang, Y. Liu, Chem. Lett. 34, 598 (2005)

    Article  Google Scholar 

  15. H.C. Yang, C.Y. Li, H. He, Y. Tao, J.H. Xu, Q. Su, J. Lumin 118, 61 (2006)

    Article  Google Scholar 

  16. E. F. Schubert, Light Emitting Diodes, 2nd ed., Chap. 17. (Cambridge University Press, Cambridge 2006) pp. 292

    Book  Google Scholar 

  17. D. Malacara, Color Vision and Colorimetry; Theory and Applications, 2nd edn. (SPIE press, Bellingham, 2011).

    Google Scholar 

  18. R.J. Mortimer, T.S. Varley, Displays 32, 35 (2011)

    Article  Google Scholar 

  19. M.V. Rao, B. Shanmugavelu, V.V.R.K. Kumar, J. Lumin 181, 291 (2017)

    Article  Google Scholar 

  20. L. Zhao, D. Wang, Y. Wang, J. Am. Ceram. Soc. 98(4), 1195 (2015)

  21. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979)

    Google Scholar 

  22. M. R. Sahar, A. S. Budi, Solid State Science and Technology 14(1), 115 (2006)

  23. M. A. Marzouk, A. M. Fayad, Appl. Phys. A 122, 931 (2016)

    Article  Google Scholar 

  24. M.A. Marzouk, J. Mol. Struct. 1019, 80 (2012)

    Article  Google Scholar 

  25. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  26. P. Sharma, M. Vashistha, I.P. Jain, J. Optoelectr. Adv. Mater. 7, 2647 (2005)

    Google Scholar 

  27. V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1736 (1996)

    Article  Google Scholar 

  28. A.M. Babu, B.C. Jamalaiah, T. Sasikala, S.A. Saleem, L.R. Moorthy, J. Alloys Compd. 509, 4743 (2011)

    Article  Google Scholar 

  29. G.H. Sigel, R.J. Ginther, Glass Technol. 9, 66 (1968).

    Google Scholar 

  30. J.A. Duffy, Phys. Chem. Glasses 38, 289 (1997)

    Google Scholar 

  31. D. Ehrt, P. Ebeling, U. Natura, J. Non-Cryst. Solids 263–264, 240 (2000)

    Article  Google Scholar 

  32. D. Möncke, D. Ehrt, Opti. Mater. 25, 425 (2004)

    Article  Google Scholar 

  33. D. Ehrt, Phys. Chem. Glasses 56(6), 217 (2015)

    Google Scholar 

  34. F.H. ElBatal, J. Mater. Sci. 43, 1070 (2008)

    Article  Google Scholar 

  35. M.A. Marzouk, Y.M. Hamdy, H.A. Elbatal, J. Non-Cryst. Solids 458, 1 (2017)

    Article  Google Scholar 

  36. C.R. Kesavulu, C.K. Jayasankar, Mater. Chem. Phys. 130, 1078 (2011)

    Article  Google Scholar 

  37. A. V. Chandrasekhar, A. Radhapathy, B.J. Reddy, Y.P. Reddy, L. Ramamoorthy, R.V.S.S.N. Ravikumar, Opti. Mater. 22, 215 (2003)

    Article  Google Scholar 

  38. K. Swapna, S. Mahamuda, A. Srinivasa Rao, M. Jayasimhadri, T. Sasikala, L. Rama Moorthy, J. Lumin. 139, 119 (2013)

    Article  Google Scholar 

  39. S.S. Babu, P. Babu, C.K. Jayasankar, Th. Trӧster, W. Sievers, G. Wortmann, Opt. Mater. 31, 624 (2009)

    Article  Google Scholar 

  40. Z.C. Wu, H.H. Fu, J. Liu, S.P. Kuang, M.M. Wu, J.G. Xu, X.J. Kuang, RSC Adv 5, 42714 (2015)

    Article  Google Scholar 

  41. Q. Zhu, J.G. Li, X. Li, X. Sun, Acta Mater. 57, 5975 (2009)

    Article  Google Scholar 

  42. L. Lipińska, A. Rzepka, R.R. Romanowski, D. Klimm, S. Ganschow, R. Diduszko, Cryst. Res. Technol. 44, 146 (2009)

    Article  Google Scholar 

  43. J. Wong, C.A. Angell, Glass Structure by Spectroscopy. (Marcel Dekker, New York, 1976)

    Google Scholar 

  44. A.M. Efimov, J. Non-Cryst. Solids 209, 209 (1997)

    Article  Google Scholar 

  45. P. Tarte, Spectrochimica Acta, 20, 238 (1964)

    Article  Google Scholar 

  46. R.A. Condrate, Introduction to Glass Science (Plenum, New York 1972)

    Google Scholar 

  47. Y. Dimitriev, L. St. Yordanov, Lakov. J. Non-Cryst. Solids 293–295, 410 (2001)

    Article  Google Scholar 

  48. Y. Dimitriev, A.B. Nedelcheva, R. Iordanova, Mater. Res. Bull. 43, 1905 (2008)

    Article  Google Scholar 

  49. C.H. Lee, H.J. Sohn, M.G. Kim, Solid State Ionics 176, 1237 (2005)

    Article  Google Scholar 

  50. P.W. McMillan, Glass–ceramic, 2nd Edn. (Acadimic Press, London 1979)

    Google Scholar 

  51. L.L. Hench, J. Mater. Sci. 17, 967 (2006)

    Google Scholar 

  52. F.H. ElBatal, A.A. Elkheshen, Mater. Chem. Phys. 110, 352 (2008)

    Article  Google Scholar 

  53. A.S. Monem, H.A. Elbatal, E.M.A. Khalil, M.A. Azooz, Y.M. Hamdy, J. Mater. Sci. 19, 1097 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Marzouk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzouk, M.A., Fayad, A.M. & ElBatal, H.A. Correlation between luminescence and crystallization characteristics of Dy3+ doped P2O5–BaO–SeO2 glasses for white LED applications. J Mater Sci: Mater Electron 28, 13101–13111 (2017). https://doi.org/10.1007/s10854-017-7143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7143-8

Keywords

Navigation