Skip to main content

Advertisement

Log in

Thiolated selenium as a new precursor for the aqueous synthesis of CdSe/CdS core/shell quantum dots

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new hydrothermal method for the synthesis of thiol-protected CdSe/CdS core/shell quantum dots (QDs) starting from thiolated cadmium and selenium is reported. Four different thiols namely; 3-mercaptopropane-1-sulfonic acid (MPSA), 2-mercaptosuccinic acid, 3-mercaptopropanoic acid (MPA) and 2-mercaptoacetic acid were used to prepare the precursors which also served as capping agent and sulphur source. The as-synthesized QDs were characterized by ultraviolet–visible (UV–Vis) and photoluminescence (PL) spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscopy. The as-prepared QDs exhibited broad trap emission with longer lifetime (>100 ns) due to thiolate trap sites. The particle growth kinetics and the photoluminescent quantum yield (PLQY) of the resulting QDs were found to be depended on the type of thiol and pH. The MPA capped QDs synthesized at pH 11.0 exhibited the high PLQY among other thiol capped QDs. The size of the QDs was calculated to be ~3 nm by XRD analysis, which is consistent with TEM results. The possible mechanism of the core/shell formation is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Zhou, Y. Yang, C. Zhang, Chem. Rev. 115, 11669 (2015)

    Article  Google Scholar 

  2. R. Freemana, I. Willner, Chem. Soc. Rev. 41, 4067 (2012)

    Article  Google Scholar 

  3. L. Yu, X. Ren, Z. Yang, Y. Han, Z. Li, J. Mat. Sci. Mater. Electron. 27, 7150 (2016)

    Article  Google Scholar 

  4. L. Liu, Q. Peng, Y. Li, Inorg. Chem. 47, 5022 (2008)

    Article  Google Scholar 

  5. Q. Wang, N. Iancu, D.-K. Seo, Chem. Mater. 17, 4762 (2005)

    Article  Google Scholar 

  6. Q. Wang, Y. Liu, Y. Ke, H. Yan, Angew. Chem. Int. Ed. 47, 316 (2008)

    Article  Google Scholar 

  7. M.L. Landry, T.E. Morrell, T.K. Karagounis, C. Hsia, C. Wang, J. Chem. Educ. 91, 274 (2014)

    Article  Google Scholar 

  8. S.M. Farkhani, A. Valizadeh, I.E.T. Nanobiotechnology 8, 59 (2014)

    Google Scholar 

  9. J. Wang, H. Han, J. Colloid. Interface Sci. 351, 83 (2010)

    Article  Google Scholar 

  10. X. Chen, J.L. Hutchison, P.J. Dobson, G. Wakefield, J. Colloid Interface Sci. 319, 140 (2008)

    Article  Google Scholar 

  11. M.F. Bertino, R.R. Gadipalli, L.A. Martin, L.E. Rich, A. Yamilov, B.R. Heckman, N. Leventis, S. Guha, J. Katsoudas, R. Divan, D.C. Mancini, Nanotechnology 18, 315603 (2007)

    Article  Google Scholar 

  12. Y.W. Lin, C.W. Liu, H.T. Chang, J. Nanosci. Nanotechnol. 6, 1092 (2006)

    Article  Google Scholar 

  13. R.M. Hodlur, M.K. Rabinal, Chem. Eng. J. 244, 82 (2014)

    Article  Google Scholar 

  14. Z.M.S.H. Khan, S.A. Khan, M. Zulfequara, Mater. Sci. Semicond. Process. 57, 190 (2017)

    Article  Google Scholar 

  15. G. Nordberg, Metal chemical properties and toxicity, Vol 3, ed. by J.M. Stellman Encyclopedia of occupational health and safety, fourth ed (International Labour Office, Geneva, 1998), p. 63.37

    Google Scholar 

  16. A.J. Almeida, A. Sahu, A. Riedinger, D.J. Norris, M.S. Brandt, M. Stutzmann, R.N. Pereira, J. Phys. Chem. C 20, 13763 (2016)

    Article  Google Scholar 

  17. S.C. Boehme, J.M. Azpiroz, Y.V. Aulin, F.C. Grozema, D. Vanmaekelbergh, L.D.A. Siebbeles, I. Infante, A.J. Houtepen, Nano Lett. 15, 3056 (2015)

    Article  Google Scholar 

  18. Q. Wang, Y. Xu, X. Zhao, Y. Chang, Y. Liu, L. Jiang, J. Sharma, D.-K. Seo, H. Yan, J. Am. Chem. Soc. 129, 6380 (2007)

    Article  Google Scholar 

  19. M. Mostafavi, Y.P. Lin, P. Pernot, J. Belloni, J. Radiat. Phys. Chem. 59, 49 (2000)

    Google Scholar 

  20. S. Kundu, H. Lee, H. Liang, Inorg. Chem. 48, 121 (2009)

    Article  Google Scholar 

  21. A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishid, Y. Tachibana, Phys. Chem. Chem. Phys. 17, 2850 (2015)

    Article  Google Scholar 

  22. F. Aldeek, L. Balan, G. Medjahdi, T. Roques-Carmes, J.-P. Malval, C. Mustin, J. Ghanbaja, R. Schneider, J. Phys. Chem. C 113, 19458 (2009)

    Article  Google Scholar 

  23. A.G. del Águila, E. Groeneveld, J.C. Maan,. C.M. Donegá, P.C.M. Christianen. ACS Nano 10, 4102 (2016)

    Article  Google Scholar 

  24. A.L. Efros, M. Rosen, Annu. Rev. Mater. Sci. 30, 475 (2000)

    Article  Google Scholar 

  25. H. Zhang, D.Y. Wang, B. Yang, H. Möhwald, J. Am. Chem. Soc. 128, 10171 (2006)

    Article  Google Scholar 

  26. F. Yang, P. Yang, Y. Cao Y, J. Fluoresc. 23, 1247 (2013)

    Article  Google Scholar 

  27. Q. Wang, D.K. Seo, Chem. Mater.18, 5764 (2006)

    Article  Google Scholar 

  28. L. Qu, X. Peng, J. Am. Chem. Soc. 124, 2049 (2002)

    Article  Google Scholar 

  29. J.Y. Zhang, X.Y. Wang, M. Xiao, L. Qu, X. Peng, Appl. Phys. Lett. 81, 2076 (2002)

    Article  Google Scholar 

  30. W. Wu, H.A. Ye, Y. Gao, Q. Chang, Z. Zheng, Y. Yang, J. Colloid Interfaces Sci. 357, 331 (2011)

    Article  Google Scholar 

  31. P. Han, G. Bester, Phys. Rev. B 92, 125438 (2015)

    Article  Google Scholar 

  32. Y.S. Park, Y. Okamoto, N. Kaji, M. Tokeshi, Y. Baba, J. Nanopart. Res. 13, 5781 (2011)

    Article  Google Scholar 

  33. C. Lei, H. Zhang, J. Hu, M. Jie, H. Zhu, B. Yang, J. Phys. Chem. C 111, 2465 (2007)

    Article  Google Scholar 

  34. L. Jing, C. Yang, R. Qiao, M. Niu, M. Du, D. Wang, M. Gao, Chem. Mater. 22, 420 (2010)

    Article  Google Scholar 

  35. R.K. Beri, P.K. Khanna, Cryst. Eng. Comm. 12, 2762 (2010)

    Article  Google Scholar 

  36. F. Dong, H. Han, J. Liang, D. Lu, Luminescence 23, 321 (2008)

    Article  Google Scholar 

  37. V.M. Dzhagan, M.Y. Valakh, A.E. Raevskaya, A.L. Stroyuk, S.Y. Kuchmiy, D.R.T. Zahn, Nanotechnology 18, 285701 (2007)

    Article  Google Scholar 

  38. L. Lu, X.L. Xu, W.T. Liang, H.F. Lu, J. Phys. Condens. Matter 19, 406221 (2007)

    Article  Google Scholar 

  39. F. Todescato, A. Minotto, R. Signorini, J.J. Jasieniak, R. Bozio, ACS Nano 7, 6649 (2013)

    Article  Google Scholar 

  40. D. Bera, L. Qian, T.K. Tseng, P.H. Holloway, Materials 3, 2260 (2010)

    Article  Google Scholar 

  41. W.W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 15, 2854 (2003)

    Article  Google Scholar 

  42. L. Zou, Z. Gu, N. Zhang, Y. Zhang, Z. Fang, W. Zhu, X. Zhong, J. Mater. Chem. 18, 2807 (2008)

    Article  Google Scholar 

  43. E. Schulek, E. Koros, J. Inorg. Nucl. Chem. 13, 58 (1960)

    Article  Google Scholar 

  44. H.E. Ganther, Biochemistry 7, 2898 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

The part of this work was financially supported by Department of Biotechnology (DBT-Nanomedicine), Government of India (Grant No: BT/PR10085/NNT/ 28/99/2007). The authors also acknowledge the assistance from National Centre for Nanoscience and Nanotechnology (NCNSNT), University of Madras, Chennai for TEM and XPS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwatobi Samuel Oluwafemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parani, S., Tsolekile, N., Pandian, K. et al. Thiolated selenium as a new precursor for the aqueous synthesis of CdSe/CdS core/shell quantum dots. J Mater Sci: Mater Electron 28, 11151–11162 (2017). https://doi.org/10.1007/s10854-017-6902-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6902-x

Keywords

Navigation