Skip to main content
Log in

The preparation and assembly of CdSxSe1−x alloyed quantum dots on TiO2 nanowire arrays for quantum dot-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly ordered TiO2 nanowire (NW) arrays were constructed by hydrothermal process as support materials for quantum dot sensitized solar cells (QDSSCs). The CdSxSe1−x alloyed quantum dots (QDs) with tunable composition have been assembled onto the TiO2 NW arrays via a facile hydrothermal method to form CdSxSe1−x/TiO2 NW photoanodes. The light absorption range of the CdSxSe1−x/TiO2 NW photoanodes can be controlled by changing the atomic ratio of S to Se. Based on CdSxSe1−x/TiO2 NW photoanodes, the photovoltaic performance of these CdSxSe1−x/TiO2 NW solar cells gradually improved as the increase of Se content in CdSxSe1−x alloyed QDs. Among all sample CdSxSe1−x/TiO2 NW solar cells which were prepared with different feed molar ratio of S:Se, the CdS0.27Se0.73/TiO2 NW solar cell (prepared with S:Se = 0:4) produced the highest power conversion efficiency up to 2.46 %. The results of investigation into optical properties and incident photon-to-current conversion efficiency indicates that the enlarged light absorption range and effective photo-to-electrical efficiency can be obtained with Se-rich CdSxSe1−x/TiO2 NW photoanodes, which contribute to the enhanced photovoltaic performance of the CdS0.27Se0.73/TiO2 NW solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 128, 2385 (2005)

    Article  Google Scholar 

  2. P.V. Kamat, J. Phys. Chem. C 112, 18737 (2008)

    Article  Google Scholar 

  3. S. Ruhle, M. Shalom, A. Zaban, ChemPhysChem 11, 2290 (2010)

    Article  Google Scholar 

  4. I. Mora-Seró, J. Bisquert, J. Phys. Chem. Lett. 1, 3046 (2010)

    Article  Google Scholar 

  5. P.V. Kamat, J. Phys. Chem. Lett. 4, 908 (2013)

    Article  Google Scholar 

  6. A.J. Nozik, J.R. Miller, Chem. Rev. 110, 6443 (2010)

    Article  Google Scholar 

  7. M. Kovendhan, D.P. Joseph, P. Manimuthu, S. Sambasivam, S.N. Karthick, K. Vijayarangamuthu, A. Sendilkumar, K. Asokan, H.J. Kim, B.C. Choi, C. Venkateswaran, R. Mohan, Appl. Surf. Sci. 284, 624 (2013)

    Article  Google Scholar 

  8. A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, D. Velauthapillai, R. Balasundaraprabhu, S. Agilan, J. Mater. Sci. Mater. Electron. 24, 3014 (2013)

    Article  Google Scholar 

  9. S. Feng, J. Yang, M. Liu, H. Zhu, J. Zhang, G. Li, J. Peng, Q. Liu, Electrochim. Acta 83, 321 (2012)

    Article  Google Scholar 

  10. W.-T. Sun, Y. Yu, H.-Y. Pan, X.-F. Gao, Q. Chen, L.-M. Peng, J. Am. Chem. Soc. 130, 1124 (2008)

    Article  Google Scholar 

  11. X.-F. Gao, H.-B. Li, W.-T. Sun, Q. Chen, F.-Q. Tang, L.-M. Peng, J. Phys. Chem. C 113, 7531 (2009)

    Article  Google Scholar 

  12. J. Xu, X. Yang, Q.-D. Yang, T.-L. Wong, S.-T. Lee, W.-J. Zhang, C.-S. Lee, J. Mater. Chem. 22, 13374 (2012)

    Article  Google Scholar 

  13. R. Gertman, A. Osherov, Y. Golan, I. Visoly-Fisher, Thin Solid Films 550, 149 (2014)

    Article  Google Scholar 

  14. H.J. Lee, P. Chen, S.J. Moon, F. Sauvage, K. Sivula, T. Bessho, D.R. Gamelin, P. Comte, S.M. Zakeeruddin, S.I. Seok, M. Grätzel, M.K. Nazeeruddin, Langmuir 25, 7602 (2009)

    Article  Google Scholar 

  15. O.E. Semonin, J.M. Luther, S. Choi, H.-Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Science 334, 1530 (2011)

    Article  Google Scholar 

  16. Y.-L. Lee, Y.-S. Lo, Adv. Funct. Mater. 19, 604 (2009)

    Article  Google Scholar 

  17. L. Yu, Z. Li, Y. Liu, F. Cheng, S. Sun, J. Mater. Sci. Mater. Electron. 26, 2286 (2015)

    Article  Google Scholar 

  18. V. González-Pedro, X. Xu, I. Mora-Seró, J. Bisquert, ACS Nano 4, 5783 (2010). doi:10.1021/nn101534y

    Article  Google Scholar 

  19. C. Chen, F. Li, G. Li, F. Tan, S. Li, L. Ling, J. Mater, Science 49, 1868 (2013)

    Google Scholar 

  20. L.A. Swafford, L.A. Weigand, M.J. Bowers, J.R. McBride, J.L. Rapaport, T.L. Watt, S.K. Dixit, L.C. Feldman, S.J. Rosenthal, J. Am. Chem. Soc. 128, 12299 (2006)

    Article  Google Scholar 

  21. W. Mao, J. Guo, W. Yang, C. Wang, J. He, J. Chen, Nanotechnology 18, 485611 (2007)

    Article  Google Scholar 

  22. X. Song, M. Wang, J. Deng, Z. Yang, C. Ran, X. Zhang, X. Yao, A.C.S. Appl, Mater. Interfaces 5, 5139 (2013)

    Article  Google Scholar 

  23. H. Wang, C. Luan, X. Xu, S.V. Kershaw, A.L. Rogach, J. Phys. Chem. C 116, 484 (2012)

    Article  Google Scholar 

  24. K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X. Feng, M. Paulose, J.A. Seabold, K.-S. Choi, C.A. Grimes, J. Phys. Chem. C 113, 6327 (2009)

    Article  Google Scholar 

  25. A. Kumar, A.R. Madaria, C. Zhou, J. Phys. Chem. C 114, 7787 (2010)

    Article  Google Scholar 

  26. X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781 (2008)

    Article  Google Scholar 

  27. Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, X. Zhong, ACS Nano 7, 5215 (2013)

    Article  Google Scholar 

  28. R. Gakhar, A. Merwin, K. Summers, S.K. Pilli, D. Chidambaram, J. Mater. Chem. A 2, 10116 (2014)

    Article  Google Scholar 

  29. T. Shu, Z. Zhou, H. Wang, G. Liu, P. Xiang, Y. Rong, H. Han, Y. Zhao, J. Mater. Chem. 22, 10525 (2012)

    Article  Google Scholar 

  30. M. Grätzel, Inorg. Chem. 44, 6841 (2005)

    Article  Google Scholar 

  31. M. Grätzel, J. Photochem. Photobiol. C Photochem. Rev. 4, 145 (2003)

    Article  Google Scholar 

  32. A.L. Rogach, A. Kornowski, M. Gao, A. Eychmuller, H. Weller, J. Phys. Chem. B 103, 3065 (1999)

    Article  Google Scholar 

  33. C. Wang, Z. Jiang, L. Wei, Y. Chen, J. Jiao, M. Eastman, H. Liu, Nano Energy 1, 440 (2012)

    Article  Google Scholar 

  34. J. Ouyang, M. Vincent, D. Kingston, P. Descours, T. Boivineau, M.B. Zaman, X. Wu, K. Yu, J. Phys. Chem. C 113, 5193 (2009)

    Article  Google Scholar 

  35. J.Y. Hwang, S.A. Lee, Y.H. Lee, S.I. Seok, A.C.S. Appl, Mater. Interfaces 2, 1343 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Ren, X., Yang, Z. et al. The preparation and assembly of CdSxSe1−x alloyed quantum dots on TiO2 nanowire arrays for quantum dot-sensitized solar cells. J Mater Sci: Mater Electron 27, 7150–7160 (2016). https://doi.org/10.1007/s10854-016-4678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4678-z

Keywords

Navigation