Skip to main content
Log in

Doped-ZnO nanoparticles for selective gas sensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure ZnO, Al3%- and Ca5%-doped ZnO nanoparticles have been synthesized by the sol–gel process under supercritical dry conditions of ethanol. The obtained nanopowders were annealed at 400 °C for 2 h in air in order to stabilize their microstructure and characterized by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). XRD demonstrated that the nanoparticles of pure and doped samples are constituted by ZnO as the primary phase. TEM images showed particles of irregular form having a broad particles size distribution. Conductometric ZnO sensors were fabricated by depositing the synthesized nanopowders on alumina substrates by screen printing technique and tested in the monitoring of environmental toxic carbon oxides, i.e. CO and CO2. Al-doped ZnO sensor showed high response towards carbon monoxide CO, while the Ca-doped sensor showed a good response to CO2, operating at the temperature of 300 and 450 °C, respectively. Both sensors are characterized by a good selectivity towards the target gas and fast response/recovery time. In order to decrease the operating temperature of Ca5%-doped sensor, co-doping by adding Al3% was also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Dolan, Can. Med. Assoc. J. 133, 393–399 (1985)

    Google Scholar 

  2. NRC Advancing the Science of Climate Change. (National Research Council. The National Academies Press, Washington, DC, USA, 2010)

    Google Scholar 

  3. D. Kohl, Sens. Actuators B 18, 71–113 (1989)

    Article  Google Scholar 

  4. A. Arshak, K. Arshak, D. Morris, O. Korostynska, E. Jafer, Sens. Actuators A 122, 242–249 (2005)

    Article  Google Scholar 

  5. S.C. Navale, V. Ravi, I.S. Mulla, S.W. Gosavi, S.K. Kulkarni, Sens. Actuators B 126, 382–386 (2007)

    Article  Google Scholar 

  6. A. Nemeth, E. Horvath, Z. Labadi, L. Fedak, I. Barsony, Sens. Actuators B 127, 157–160 (2007)

    Article  Google Scholar 

  7. S.-J. Chang, T.-J. Hsueh, I.-C. Chen, B.-R. Huang, Nanotechnology 19, 175502–175506 (2008)

    Article  Google Scholar 

  8. C. Baratto, G. Sberveglieri, A. Onischuk, B. Caruso, S. di Stasio, Sens. Actuators B 100, 261–265 (2004)

    Article  Google Scholar 

  9. G. Sberveglieri, P. Nelli, S. Groppelli, F. Quaranta, A. Valentini, L. Vasanelli, Mater. Sci. Eng. B 7, 63–68 (1990)

    Article  Google Scholar 

  10. S. Basu, A. Dutta, Sens. Actuators B 22, 83–87 (1994)

    Article  Google Scholar 

  11. L. El Mir, K. Omri, J. El Ghoul, A.S. AL-Hobaib, H. Dahman, C. Barthou, Superlattices Microstruct. 65, 248–255 (2014)

    Article  Google Scholar 

  12. M.I. Baraton, L. Merhari, Mater. Trans. 42, 1616–1622 (2001)

    Article  Google Scholar 

  13. M. Hjiri, R. Dhahri, L. El Mir, A. Bonavita, N. Donato, S.G. Leonardi, G. Neri, J. Alloys Compd. 634, 187–192 (2015)

    Article  Google Scholar 

  14. M. Hjiri, R. Dhahri, K. Omri, L. El Mir, S.G. Leonardi, N. Donato, G. Neri, Mater. Sci. Semicond. Process. 27, 319–325 (2014)

    Article  Google Scholar 

  15. R. Dhahri, S.G. Leonardi, M. Hjiri, L. El Mir, A. Bonavita, N. Donato, D. Iannazzo, G. Neri, Sens. Actuators B 239, 36–44 (2017)

    Article  Google Scholar 

  16. G. Neri, Chemosensors 3, 1–20 (2015)

    Article  Google Scholar 

  17. L. El Mir, Z. Ben Ayadi, M. Saadoun, K. Djessas, H.J. von Bardeleben, S. Alaya, Appl. Surf. Sci. 254, 570–573 (2007)

    Article  Google Scholar 

  18. Y. Chen, D.M. Bagnall, H.K. Koh, K.T. Park, K. Hiraga, Z.Q. Zhu, T. Yao, J. Appl. Phys. 84, 3912–3918 (1998)

    Article  Google Scholar 

  19. L. El Mir, J. El Ghoul, S. Alaya, M. Ben Salem, C. Barthou, J.H. von Bardeleben. Physica B 403, 1770–1774 (2008)

    Article  Google Scholar 

  20. S. Ghosh, M. Narjinary, A. Sen, R. Bandyopadhyay, S. Roy, Sens. Actuators B 203, 490–496 (2014)

    Article  Google Scholar 

  21. L. El Mir, Z. Ben Ayadi, M. Saadoun, H.J. Von Bardeleben, K. Djessas, A. Zeinert, Phys. Stat. Solidi A 204, 3266–3277 (2007)

    Article  Google Scholar 

  22. Z. Ben Ayadi, L. El Mir, K. Djessas, S. Alaya, Nanotechnology 18, 445702–445706 (2007)

    Article  Google Scholar 

  23. M. Hjiri, L. El Mir, S.G. Leonardi, N. Donato, G. Neri, Nanomaterials 3, 357–369 (2013)

    Article  Google Scholar 

  24. S.D. Shinde, G.E. Patil, D.D. Kajale, V.G. Wagh, V.B. Gaikwad, G.H. Jain, Int. J. Smart Sens. Intell. Syst. 5, 277–294 (2012)

    Google Scholar 

  25. O.V. Manoilova, S.G. Podkolzin, B. Tope, J. Lercher, E.E. Stangland, J.-M. Goupil, B.M. Weckhuysen, J. Phys. Chem. B 108, 15770–15781 (2004)

    Article  Google Scholar 

  26. A. Prim, E. Pellicer, E. Rossinyol, F. Peiró, A. Cornet, J.R. Morante, Adv. Funct. Mater. 17, 2957–2963 (2007)

    Article  Google Scholar 

  27. I. Djerdj, A. Haensch, D. Koziej, S. Pokhrel, N. Barsan, U. Weimar, M. Niederberger, Chem. Mater. 21, 5375–5381 (2009)

    Article  Google Scholar 

  28. G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan, Sens. Actuators B 132, 224 (2008)

    Article  Google Scholar 

  29. P.M. Shirage, A.K. Rana, Y. Kumar, S. Sen, S.G. Leonardi, G. Neri, RSC Adv. 6, 82733–82742 (2016)

    Article  Google Scholar 

  30. S.M. Kanan, O.M. El-Kadri, I.A. Abu-Yousef, M.C. Kanan, Sensors 9, 8158–8196 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hjiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hjiri, M., Zahmouli, N., Dhahri, R. et al. Doped-ZnO nanoparticles for selective gas sensors. J Mater Sci: Mater Electron 28, 9667–9674 (2017). https://doi.org/10.1007/s10854-017-6717-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6717-9

Keywords

Navigation