Skip to main content
Log in

Synthesis and characterization of NiO Nanoparticles using egg white method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

NiO nanoparticles have been synthesized by chemical method using Egg white. Phase formation and magnetic properties of NiO nanoparticles were characterized by using TG/DTA, XRD, RAMAN and VSM. Magnetic parameters such as remnant (MR) and saturation magnetization (MS) of NiO nanoparticles sintered at 700 °C were 0.007 and 1.04 emu/g, respectively. ESR measurement was also carried out to identify the origin of magnetic nature and the measured effective g-factor of NiO nanoparticles is 2.29. Morphological characterization has been done on obtained NiO nanoparticles by FE-SEM and TEM analysis. The chemical composition of NiO nanoparticles was identified by energy dispersive X-ray spectroscopy studies. Dielectric properties of sintered NiO disk were examined at room temperature as a function of frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Yushin, A. Nikitin, Y. Gogotsi, in Nanomaterials Handbook, ed. By Y. Gogotsi (CRC Taylor and Francis Group, Boca Raton, 2006)

    Google Scholar 

  2. G. Vijayaprasath, G. Ravi, A.S. Haja Hameed, T. Mahalingam, J. Phys. Chem. C 118, 9715 (2014)

    Article  Google Scholar 

  3. G. Vijayaprasath, R. Murugan, S. Asaithambi, P. Sakthivel, T. Mahalingam, Y. Hayakawa, G. Ravi, Ceram. Int. 42, 2836 (2016)

    Article  Google Scholar 

  4. S. Thota, J. Kumar, J. Phys. Chem. Solids 68, 1951 (2007)

    Article  Google Scholar 

  5. M. Tadic, D. Nikolic, M. Panjan, G.R. Blake, J. Alloys. Comp. 647, 1061 (2015)

    Article  Google Scholar 

  6. M. Alagiri, S. Ponnusamy, C. Muthamizhchelvan, J. Mater. Sci. 23, 728 (2012)

    Google Scholar 

  7. M.P. Proenca, C.T. Sousa, A.M. Pereira, P.B. Tavares, J. Ventura, M. Vazquez, J.P. Araujo, Phys. Chem. Chem. Phys. 13, 9561 (2011)

    Article  Google Scholar 

  8. S. Pereira, A. Goncalves, N. Correia, J. Pinto, L. Pereira, R. Martins, E. Fortunato, Sol. Energy Mater. Sol. Cells 120, 109 (2014)

    Article  Google Scholar 

  9. M. Tadić, M. Panjan, D. Marković, I. Milošević, V. Spasojević, J. Alloys. Comp. 509, 7134 (2011)

    Article  Google Scholar 

  10. A. Santhoshkumar, H.P. Kavitha, R. Suresh, J. Adv. Chem. Sci. 2, 230 (2016)

    Google Scholar 

  11. F. Motahari, M.R. Mozdianfard, F. Soofivand, M. Salavati-Niasari, RSC Adv. 4, 27654 (2014)

    Article  Google Scholar 

  12. S. Nandy, G. Goncalves, J.V. Pinto, T. Busani, V. Figueiredo, L. Pereira, R.F.P. Martins, E. Fortunato, Nanoscale 5, 11699 (2013)

    Article  Google Scholar 

  13. J.F.K. Cooper, A. Ionescu, R.M. Langford, K.R.A. Ziebeck, C.H.W. Barnes, R. Gruar, C. Tighe, J.A. Darr, N.T.K. Thanh, B. Ouladdiaf, J. Appl. Phys. 114, 083906 (2013)

    Article  Google Scholar 

  14. R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Phys. Rev. Lett. 79, 7 (1997)

    Article  Google Scholar 

  15. K. Karthik, G.K. Selvan, M. Kanagaraj, S. Arumugam, N.V. Jaya, J. Alloys. Comp. 509, 181 (2011)

    Article  Google Scholar 

  16. J.B. Yi, J. Ding, Y.P. Feng, G.W. Peng, G.M. Chow, Y. Kawazoe, B.H. Liu, J.H. Yin, S. Thongmee, Phys. Rev. B 76, 224402 (2007)

    Article  Google Scholar 

  17. T. Ahmad, K.V. Ramanujachary, S.E. Lofland, A.E. Ganguli, Sol. Stat. Sci. 8, 425 (2006)

    Article  Google Scholar 

  18. Yu.G. Morozov, D. Ortega, O.V. Belousova, I.P. Parkin, M.V. Kuznetsov, J. Alloys Compd. 572, 150 (2013)

    Article  Google Scholar 

  19. E.A. Souza, J.G.S. Duque, L. Kubota, C.T. Meneses, J. Phys. Chem. Solids 68, 594 (2007)

    Article  Google Scholar 

  20. S. Maensiri, C. Masingboon, B. Boonchom, S. Seraphin, Scr. Mater. 56, 797 (2007)

    Article  Google Scholar 

  21. Y.M. Al Angari, J. Magn. Magn. Mater. 323, 1835 (2011)

    Article  Google Scholar 

  22. A. Rajesh, M.M. Raja, K. Gurunathan, Acta Metall. Sin. 27(2), 253 (2014)

    Article  Google Scholar 

  23. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956)

    Article  Google Scholar 

  24. W.J. Gong, W. Liu, D. Li, S. Guo, X.H. Liu, J.N. Feng, B. Li, X.G. Zhao, Z.D. Zhang, J. Appl. Phys 109, 07D711 (2011)

    Article  Google Scholar 

  25. Z. Shi, J. Zhang, D. Gao, Z. Zhu, Z. Yang, Z. Zhang, D. Xue, Nanoscale Res. Lett. 8, 404 (2013)

    Article  Google Scholar 

  26. K.V.P.M. Shafi, Y. Koltypin, A. Gedanken, R. Prozorov, J. Balogh, J. Lendvai, I. Felner, J. Phys. Chem. B 101, 6409 (1997)

    Article  Google Scholar 

  27. K. Sudalai Muthu, N. Lakshminarasimhan, Ceram. Intern. 39, 2309 (2013)

    Article  Google Scholar 

  28. K.V. Rao, A. Smakula, J. Appl. Phys. 36, 2031 (1965)

    Article  Google Scholar 

  29. N. Fuschillo, B. Lalevic, B. Leung, Thin Solid Films 24, 181 (1974)

    Article  Google Scholar 

Download references

Acknowledgements

The authors K. Sudalai Muthu and P. Perumal acknowledge the National Institute of Technology (NIT), Trichy for availing the facility of dielectric studies for sintered pellet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Perumal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudalai Muthu, K., Perumal, P. Synthesis and characterization of NiO Nanoparticles using egg white method. J Mater Sci: Mater Electron 28, 9612–9617 (2017). https://doi.org/10.1007/s10854-017-6710-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6710-3

Keywords

Navigation